低濃度 P C B 廃棄物の 処理に関するガイドライン - 焼却処理編-

令和2年10月改訂

環境省 環境再生・資源循環局 廃棄物規制課

目次

第1	章		総 則	1
1		1	目的	1
1		2	PCBの性状	5
	1		PCBの構造と用途	5
	2		PCB問題の経緯	5
	3		PCBの性状等	5
	4		PCBに関する各種環境法令の基準等	8
	5		絶縁油の性状	8
第2	章		焼却処理	0
2		1	低濃度PCB廃棄物の焼却施設の概要1	0
2		2	焼却処理に当たって1	2
	1		処理施設の事前確認1	2
	2		処理条件等の設定1	2
2		3	処理施設の構造等1	3
	1		共通事項 1	3
	2		受入設備 1	5
	3		供給設備 1	5
	4		燃焼設備等 1	6
	5		環境対策設備1	8
	6		分析設備 2	0
	7		異常発生の防止対策2	1
2		4	処理施設の維持管理等2	2
	1		受入2	2
	2		供給2	9
	3		焼却処理 3	1
	4		事故時等の対応3	3
	5		火災防止 3	4
	6		施設の点検及び機能検査3	5
	7		生活環境保全3	7
	8		維持管理等に関する記録の作成・保存・閲覧4	3
	9		処理施設において発生した廃棄物の適正処理4	5
	1	0	運転管理体制4	7
	1	1	事故の未然防止4	9
	1	2	緊急時連絡体制4	9

	1	3	3 緊急時の措置	50
	1	4	l 専門家による支援	51
第:	3 章		円滑な処理のために必要な事項	52
	3.	1	目的	52
	3.	2	2 平常時の処理の安全性の確保に向けた取組事項	53
	1		施設の管理の方法	53
	2		排ガスや排水、敷地境界におけるPCB濃度の測定	54
	3		処理対象物の管理	54
	4		処理に伴い生ずる廃棄物の管理	55
	3.	3	3 異常時の対応に関する事項	56
	1		異常時及び災害時の対応方法	56
	2		連絡方法	56
	3.	4	4 その他	57
	1		環境安全教育や防災訓練等の実施に関する情報	57
	2		施設見学等の実施に関する情報	57
	3		処理状況の評価に関する情報	57

第1章 総 則

1. 1 目的

低濃度PCB廃棄物の処理に関するガイドライン(焼却処理編)は、低濃度PCB廃棄物の安全かつ確実な無害化を進めるため、廃棄物の処理及び清掃に関する法律その他の関係法令に定められている焼却処理に係る基準等の遵守に関する事項の他、処分状況や維持管理の状況に関する情報公開の方法に関する事項などを具体的に示したものである。

- 1 ポリ塩化ビフェニル (PCB) を使用していないとする電気機器等に、数 mg/kg から数十 mg/kg 程度の微量のPCBに汚染された絶縁油を含むものが存在することが、平成14 年7月に判明している。その量は、電気機器が約160万台、OFケーブルが約1,400kmに上ると推計されている。
- 2 一方、PCBを絶縁油として使用した電気機器等の保管や廃棄物処理を行う過程で発生した汚泥、ウエス(雑巾)、活性炭、防護服等の二次汚染物が相当量発生し保管されている。この他、PCBを熱媒体、潤滑油、可塑剤、塗料等に使用した製品が廃棄物になったもののうち、比較的濃度が低いものが相当量存在していることが判明している。
- 3 廃棄物の処理及び清掃に関する法律施行規則(以下、「規則」という。)第 12 条の 12 の 14 において規定される無害化処理に係る特例の対象となる産業廃棄物のうち、低濃度 PCB廃棄物とは、次の3種類をいう。
 - ① 低濃度PCB廃油

廃PCB等(廃棄物の処理及び清掃に関する法律施行令(以下、「令」という。)第 2条の4第5号イに規定する廃PCB等をいう。)のうち、次に掲げるもの

イ 「微量PCB汚染絶縁油」

に掲げるものを除く。)

電気機器又はOFケーブル(PCBを絶縁材料として使用した電気機器又はOFケーブルを除く。)に使用された絶縁油であって、微量のPCBによって汚染されたものが廃棄物となったもの

- ロ 「低濃度PCB含有廃油」 PCBの濃度が廃PCB等1キログラムにつき 5,000 ミリグラム以下のもの (イ
- ② 低濃度PCB汚染物

PCB汚染物(令第2条の4第5号ロに規定するPCB汚染物をいう。)のうち、次に掲げるもの

イ 「微量PCB汚染物」

微量PCB汚染絶縁油が塗布され、染み込み、付着し、又は封入されたものが廃棄物となったもの

ロ 「低濃度PCB含有汚染物」(ハ、ニ同じ)

汚泥、紙くず、木くず又は繊維くずのうち、当該汚泥、紙くず、木くず又は繊維くずに塗布され、又は染み込んだPCBの量が汚泥、紙くず、木くず又は繊維くず1キログラムにつき100,000ミリグラム以下のもの(イに掲げるものを除く。)

- ハ 廃プラスチック類のうち、当該廃プラスチック類に付着し、又は封入されているPCBの量が廃プラスチック類1キログラムにつき100,000ミリグラム以下のもの(イに掲げるものを除く。)
- ニ 金属くず、陶磁器くず又は工作物の新築、改築若しくは除去に伴って生じたコンクリートの破片その他これに類する不要物(以下この号及び次号において「金属くず等」という。)のうち、当該金属くず等に付着し、又は封入されているPCBの量が金属くず等に付着し、又は封入されている物1キログラムにつき5,000ミリグラム以下のもの(イに掲げるものを除く。)

③ 低濃度PCB処理物

PCB処理物(令第2条の4第5号ハに規定するPCB処理物をいう。)のうち、次に掲げるもの

- イ「微量PCB処理物」
 - ①イ又は②イに掲げる廃棄物を処分するために処理したもの
- コ 「低濃度 P C B 含有処理物」(ハ〜ト同じ) 廃油のうち、当該廃油に含まれる P C B の量が廃油 1 キログラムにつき5,000 ミリ グラム以下のもの (イに掲げるものを除く。)
- ハ 廃酸又は廃アルカリのうち、当該廃酸又は廃アルカリに含まれるPCBの量が 廃酸、又は廃アルカリ1キログラムにつき5,000ミリグラム以下のもの(イに掲げ るものを除く。)
- ニ 汚泥、紙くず、木くず又は繊維くずのうち、当該汚泥、紙くず、木くず又は繊維くずに含まれるPCBの量が汚泥、紙くず、木くず又は繊維くず1キログラムにつき5,000ミリグラム以下のもの(イに掲げるものを除く。)
- ホ 廃プラスチック類のうち、当該廃プラスチック類に付着しているPCBの量が 廃プラスチック類1キログラムにつき5,000ミリグラム以下のもの(イに掲げるも のを除く。)
- へ 金属くず等のうち、当該金属くず等に付着しているPCBの量が金属くず等に 付着している物1キログラムにつき5,000ミリグラム以下のもの(イに掲げるもの を除く。)
- ト イからへまでに掲げるもの以外のものであって、当該PCB処理物に含まれる

PCBの量がPCB処理物1キログラムにつき5,000 ミリグラム以下のもの

低濃度PCB廃棄物の処理に関するガイドライン(焼却処理編)(以下「本ガイドライン」という。)では、以下、①イ、②イ及び③イを「微量PCB汚染廃電気機器等」、それ以外のものを「低濃度PCB含有廃棄物」と総称する。なお、令第2条の4第5号口に定めるPCB汚染物に該当しない廃酸・廃アルカリ及びガラスくず等のPCBに汚染された廃棄物については、同号ハに定めるPCB処理物に準じて取り扱うものとする。

低濃度PCB廃棄物の区分を表1.1にまとめて示す。

表1.1 低濃度PCB廃棄物の区分

	低濃度PCB廃棄物		
	I 微量 PCB 汚染廃電気機器等	Ⅱ 低濃度 PCB 含有廃棄物	
①低濃度 PCB 廃油	イ 微量 PCB 汚染絶縁油	口 低濃度 PCB 含有廃油	
	(電気機器又は0Fケーブルに使	(PCB 濃度が 5,000mg/kg 以下の	
	用された絶縁油であって微量	廃油等)	
	の PCB に汚染されたもの)	(主として液状物)	
②低濃度 PCB 汚染物	イ 微量 PCB 汚染物	口 低濃度 PCB 含有汚染物	
	(微量 PCB 汚染絶縁油によって	・PCB 濃度が 100,000mg/kg 以下	
	汚染されたもの)	の汚泥、紙くず、木くず、繊	
		維くず、廃プラスチック類	
		・金属くず、陶磁器くず、コン	
		クリート破片等の不要物(金	
		属くず等)に付着したものの	
		PCB 濃度が 5,000mg/kg 以下の	
		もの	
		(主として固形物)	
③低濃度 PCB 処理物	イ 微量 PCB 処理物	口 低濃度 PCB 含有処理物	
	(①イ、②イを処分するために	(PCB 廃棄物を処分するために	
	処理したもの)	処理したものであって、PCB	
		濃度が 5,000mg/kg 以下のもの	
		(金属くず等は付着物の PCB	
		濃度をいう。))	

4 本ガイドラインは、低濃度PCB廃棄物を安全かつ適正に処理し、生活環境の保全を図るため、低濃度PCB廃棄物の特性にかんがみ、主として廃棄物の処理及び清掃に関する法律(昭和45年法律第137号。以下「法」という。)に基づく処理基準を遵守するために必要な事項を具体的に示したものである。

- 5 低濃度 P C B 廃棄物の焼却処理については、低濃度 P C B 廃油を焼却炉内に直接噴霧して処理する方法、低濃度 P C B 廃油が入ったままの小型の廃電気機器等や低濃度 P C B 廃油が染み込みまたは付着した木くず・紙くず等の固形物あるいは低濃度 P C B 廃油を入れた容器を直接焼却炉内に投入して処理する方法、低濃度 P C B 廃油が封入されたままの、あるいは抜油された廃電気機器等(変圧器、コンデンサー、O F ケーブル等)を加熱することにより廃電気機器等に付着している P C B をガス化して分離した後、それを燃焼させて処理する方法(加熱分離・ガス化)等がある。本ガイドラインは、それらの方法で低濃度 P C B 廃棄物を焼却処理する方法を示すこととする。
- 6 また、低濃度PCB廃棄物の処理を円滑に進めるためには、その処理を行う又は行お うとする者は、管轄する都道府県や市町村、処理施設の近隣住民等との間で、処理の安 全性の確保に向けた取組や処理の状況等に関して情報を共有し、処理に関して共通の理 解を得ることにより、処理を円滑に進めるための信頼関係を構築することが適切である。 このようなことから、本ガイドラインでは処分状況や維持管理の状況に関する情報公開 の方法に関する事項などについても具体的に示している。

1.2 PCBの性状

PCBは、水にきわめて溶けにくく、化学的に安定している、熱により分解しにくい、 絶縁性が良い、沸点が高い、不燃性であるなどの性質を有し、種々な用途に使用された が、その有害性が明らかとなり、製造等が禁止され、その確実かつ適正な処理が求めら れている物質である。

1 PCBの構造と用途

PCBは、ビフェニルの水素が塩素に置換した化合物(図1.1)の総称で、水にきわめて溶けにくく、化学的に安定している、熱により分解しにくい、絶縁性が良い、沸点が高い、不燃性であるなどの性質を有し、その用途は多岐にわたっていた。

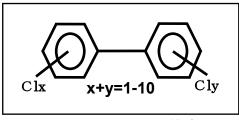


図1.1 PCBの構造

最大の用途は、変圧器やコンデンサー等の絶縁油であり、また、熱交換器等の熱媒体、 感圧複写紙等に用いられた。

日本国内で主に使用された製品PCBには、カネクロール (KC) とアロクロールがあり、それぞれ塩素数等によっていくつかの種類の製品があった。例えば、三塩化ビフェニルが主成分の KC300、四塩化ビフェニルが主成分の KC400、五塩化ビフェニルが主成分の KC500、KC500 にトリクロロベンゼンを混合した KC1000 などがあった。

KC300 は主にコンデンサーと感圧複写紙に、KC400 は主に熱媒体と一部コンデンサーに、 KC500 は主にコンデンサーと一部その他に、KC1000 は主に変圧器に各々使用された。

2 PCB問題の経緯

1966年(昭和41年)以降、スウェーデン各地の魚類やワシをはじめ、世界各地の魚類や鳥類の体内からPCBが検出され、PCBが地球全体を汚染していることが明らかになってきた。我が国においても、昭和43年に食用油の製造過程において熱媒体として使用されたPCBが食用油に混入したカネミ油症事件が起きた。

このような状況に対応し、昭和47年からは、PCBの新たな製造等はなくなり、さらに、昭和48年10月に化学物質の審査及び製造等の規制に関する法律が制定され、PCBは同法に基づく特定化学物質(昭和61年の法改正により、現在は第一種特定化学物質)に指定されて、事実上製造等が禁止された。

3 PCBの性状等

PCBの性状について、表1.2にまとめる。

表1.2 PCBの性状等

	主たる用途 変圧器やコンデンサー等の絶縁油、熱媒体、感圧複写紙等			
主たる用途		後圧器やコンテンサー等の絶縁油、熱媒体、感圧複写紙等 KC300 コンデンサーの絶縁油、熱媒体、感圧複写紙		
		KC400 コンデンサーの絶縁油、熱媒体		
		KC1000 変圧器の絶縁油 (KC500 とトリクロロベンゼンの混合油)		
	色など	PCB自体は粘性油状で透明、ほとんど無色。		
	臭い	甘いような特有の臭気がある。		
	引火性	PCB自体の引火性は極めて低い。他の絶縁油と混合した混合油に		
	カルベエ	は引火性のものがある。		
	比重	PCB自体は1.2程度以上と水より重い。		
		KC300 で 1.3 程度、KC1000 で 1.5 程度		
	可燃性	火炎により分解し、刺激性で有害なガス(塩化水素ガスなど)を生じ		
4./ *** *******************************	.,,	る。不完全燃焼するとダイオキシン類を生成する。		
物理	沸点及び蒸	沸点が高く、蒸気圧は低い。		
化学的	気圧	沸点(℃) 蒸気圧(35℃)		
特性	/\(\)	KC300 325~360 0.13Pa(0.001mmHg)		
		KC400 340~375 0.05Pa (0.00037mmHg)		
		VOTO 005 000 0 000D (0 0000C H)		
	水溶性	RC500 365~390 0.008Pa(0.00006mmHg) 水にきわめて溶けにくい。		
	小份江	水にされめて俗がにくい。 室温での溶解度の報告例(排水基準:0.003mg/L)		
		KC300 0.15mg/L		
		KC400 0.04mg/L		
	A 14 14	KC500 0.008mg/L		
	急性毒性	区分 4 LD50 (半数致死量)		
	(経口)	KC300 1050mg/kg ラット 経口		
		KC400 1140mg/kg ラット 経口		
		KC400 800mg/kg マウス 経口		
	急性毒性	区分 3 LD50 (半数致死量)		
	(経皮)	Aroclor. 1242、1248 800mg/kg ウサギ		
	発がん性	区分 1B ²⁾ ヒトに対しておそらく発がん性がある。		
	生殖毒性	区分 1A ヒトに対して生殖毒性があることが知られている。		
健康に	特定標的	区分3		
対する	臓器毒性	気 道 刺 ヒトで気道刺激性が認められるとの記述がある。		
有害性	(単回ばく	激性		
	露)			
(GHS	特定標的	区分1 長期間又は大量に摂取した場合、下記のような慢性影響		
分類	臓器毒性	肝臓、皮 がある。		
区分)1)	(反復ばく	膚、免疫 皮膚・粘膜系:ニキビのような吹き出物、皮膚の黒ず		
	露)	系み、目や口腔粘膜異常		
	- H/	肝臓系 : 黄色肝萎縮、黄胆、浮腫、腹痛		
		神経系・倦怠感、手足のしびれ、末梢神経系の		
		異常		
		内分泌系 : ホルモンの機能異常		
		その他:高脂血症、貧血症状		
		ADI (許容摂取量) 5 μ g/kg/day 3)		
		MDI (同) 在1次4人里/ υ μ g/ Ng/ uay		

環境に 対する 有害性	水生環境 急性有害性	区分1	水生生物に非常に強い毒性
(GHS 分類 区分)	水生環境 慢性有害性	区分1	長期的影響により水生生物に非常に強い毒性

- 1) GHS (Globally Harmonized System of Classification and Labelling of Chemicals):国連による化学品の分類及び表示に関する国際調和システム。有害作用の程度や当該毒性に関する根拠の確からしさにより分類区分が設定されている(参考:厚生労働省_職場のあんぜんサイト「GHS モデル SDS 情報」)。
- 2) 国際がん研究機関 (IARC)による発がん性リスクの分類:グループ1 (ヒトに対して発がん性がある)、日本産業衛生学会による発がん性分類の勧告 (環衛誌 2017:59(5)):第1群 (ヒトに対して発がん性があると判断できる;発がん以外の健康影響を指標として許容濃度が示されている物質)
- 3) 暫定一日許容摂取量:食品中に残留するPCBの規制について(昭和47年8月24日環食第442号);厚生省環境衛生局

その他、「PCB処理技術ガイドブック」(財)産業廃棄物処理事業振興財団、「内分泌かく乱作用が疑われる化学物質の生体影響データ集」都立衛生研究所、安全データシート SDS No. 1021-19105 等を参考

4 PCBに関する各種環境法令の基準等

PCBに関する各種環境法令の基準等をまとめて表1.3に示す。

表1.3 PCBに係る環境法令基準等

暫定排出許容限界 ¹⁾ (排ガス)	最大 0.25mg/m³ (液状 PCB 焼却時 0.15mg/m³) 平均 0.15mg/m³ (液状 PCB 焼却時 0.10mg/m³) * ※48 時間につき 3 回測定した値の平均値
排水基準 2)	0.003mg/L
作業環境管理濃度 3)	$0.01 \text{mg/m}^3 \ (10 \mu \text{g/m}^3)$
暫定大気環境基準 1)	$0.0005 \mathrm{mg/m^3}$
水質環境基準 4)	検出されないこと(定量下限 0.0005mg/L)
土壤溶出量基準 5)	検液中に検出されないこと (定量下限 0.0005mg/L)
底質の暫定除去基準 6)	10mg/kg-乾燥重量

- 1) PCB等を焼却処分する場合における排ガス中のPCBの暫定排出許容限界について(昭和47年12月環境庁通知、環大企141号)
- 2) 排水基準を定める省令(昭和46年6月 総理府令第35号)
- 3) 作業環境評価基準 (昭和63年労働省告示第79号) 別表
- 4) 水質汚濁に係る環境基準について (昭和46年12月 環境庁告示第59号)
- 5) 土壌の汚染に係る環境基準について(平成3年8月 環境庁告示第46号)
- 6) 底質の暫定除去基準について (昭和50年10月 環水管第119号)

低濃度PCB廃棄物の焼却処理に当たっては、これらのうち、排ガスの暫定排出許容限界、排水基準、作業環境管理基準等を確実に満たすことが求められる。

5 絶縁油の性状

電気機器等に使用されていた鉱油を主成分とする絶縁油の性状を表1.4に示す。

ただし、絶縁油には、鉱油以外にもアルキルベンゼンや、ポリブテン等があり、それらの性状は、絶縁油メーカーが発行している製品ごとの製品安全データシート(SDS)により確認する必要がある。

なお、本ガイドラインで対象としている微量PCB汚染絶縁油は、絶縁油中に含まれるPCBが微量であることから、その性状はほぼ絶縁油に近いものであると考えられる。

表1.4 絶縁油(鉱油)の性状

衣 1 . 4 . 肥冰油(**	
用途	鉱油を主成分とする絶縁油。油入りコンデンサーや油入りケーブルで用
	いられる1号、油入り変圧器や油遮断器で用いられる2号、3号(寒冷
	地用除く。)、大容量高圧変圧器で用いられる4号がある。
危険有害性の要約	最重要危険有害性:分類基準に該当しない。
	有害性 : 現在のところ有用な情報無し
	環境影響 : 現在のところ有用な情報無し
	物理的及び化学的危険性:可燃性があるので、火気に注意する。
	特定の危険有害性:現在のところ有用な情報無し
	急性毒性(LD50) : 5 g/kg 以上(ラット)(推定値)
組成·成分情報	単一製品・混合物の区別:混合物
	 化学名又は一般名:石油系炭化水素または石油系炭化水素と添加剤。(配
	合は石油会社の製品により異なる。成分は非公開)
	化学特性:特定できない。
	危険有害成分:
	化学物質管理促進法:対象物質ではない。
	労働安全衛生法:第57条の2通知対象物質 政令番号 第169号
	鉱油
	毒物劇物取締法:対象物質ではない。
物理的及び	液体
化学的性質	発火点:200~410℃ (参考値)
	引火点:130℃以上
	溶解性(水に対する溶解性):不溶
	揮発性:無し
	初留点:250℃以上または記載無し等、製品により異なる。
	流動点: -30℃以下
	密度 : 0.86~0.91(15℃)
輸送に関する国内	陸上輸送:消防法(第4類第3石油類)(危険等級Ⅲ)
法規制	労働安全衛生法 通知対象物
	海上輸送:船舶安全法 危険物船舶運送法及び貯蔵規則における危険物
	に該当しない。
	航空輸送:航空法における危険物に該当しない。
	国連分類:非該当 (国連の定義による危険物に該当しない。)
保護具	呼吸器用の保護具:通常必要でないが、必要に応じて防毒マスク(有機
	ガス用)を着用する。
	手の保護具:長期間又は繰り返し接触する場合には耐油性のものを着用
	する。
	目の保護具:飛沫が飛ぶ場合には普通型眼鏡を着用する。
	皮膚及び身体の保護具:長期間にわたり取扱う場合または濡れる場合に
	は耐油性の長袖作業着等を着用する。
注) 木主の粉荷はぬぬ	

注)本表の数値は絶縁油メーカー発行の SDS 等から参考として引用したものであり、各製品により発火点、引火点等の数値その他に差が見られる。

第2章 焼却処理

2. 1 低濃度PCB廃棄物の焼却施設の概要

環境省では、低濃度PCB廃棄物が安全かつ確実に処理できることを確認するため、 その実証試験を実施してきた。低濃度PCB廃棄物の実証試験に使用された焼却施設の 形式としては、ロータリーキルン式焼却炉、ストーカ式燃焼炉、酸素バーナー式溶融炉 等がある。施設の例として、ロータリーキルン式焼却炉を図2.1に示す。

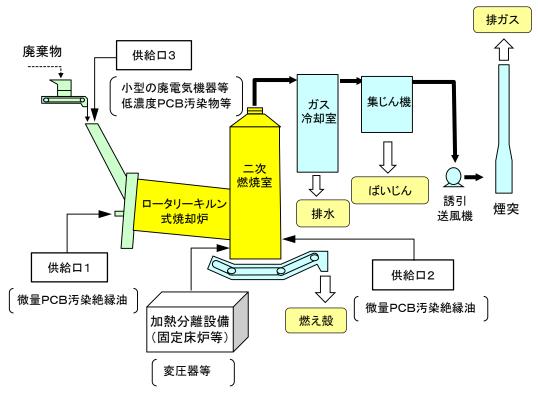


図2.1 低濃度PCB廃棄物の焼却実証試験に 使用された焼却施設(例)

低濃度PCB廃油は、ロータリーキルンの上流側(供給口1)や二次燃焼室の上流側(供給口2)から供給される。また、低濃度PCB廃油が封入された小型の廃電気機器や紙くず、木くず等の低濃度PCB汚染物は、密閉性のプラスチック容器等に入れて供給口3から供給される。一方、低濃度PCB廃油が封入されていた廃電気機器等やドラム缶等は、その大きさや重量のため直接焼却炉内に投入することが困難である。そのため、廃電気機器等を固定床炉等にて所定の温度以上で必要な時間加熱し、低濃度PCB廃油を分離させる加熱分離設備により処理することが考えられる。加熱分離設備からのガスは、ロータリーキルン式焼却炉の二次燃焼室等に導入される。燃焼ガスは、低濃度PCB廃油が確実に分解されるのに必要な温度が維持された燃焼室内を、分解に必要な時

間滞留した後、二次燃焼室から排出される。その後、ダイオキシン類の再合成の防止のため、ガス冷却室において、200℃以下にまで急冷され、ガス冷却室を通過した排ガスは、集じん機によりばいじんが取り除かれた後、煙突から排出される。

燃え殻は、炉の下部にある排出口から水槽等へ排出され、冷却された後回収される。 ガス冷却室において、冷却のために水を使用することで排水を伴う場合は、排水は排水 処理設備において処理された後、排ガス処理施設で再利用或いは施設外へ排出される。

2. 2 焼却処理に当たって

1 処理施設の事前確認

PCB等の焼却を行う場合には、事前に当該PCB等の焼却施設のPCB分解能力、 PCBの排出濃度、周辺環境濃度等について十分調査確認すること。

(環境庁大気保全局長通知 昭和47年12月22日 環大企第141号)

低濃度PCB廃棄物の焼却処理を行おうとする場合は、処理を行おうとする低濃度PCB廃棄物を試験試料とした焼却実証試験を行い、試験中に測定したPCBやダイオキシン類等の排出濃度及び周辺環境のPCBの濃度を確認することで、低濃度PCB廃棄物が安全かつ確実に処理できることを確認しておく必要がある。加えて、固定床炉等の加熱分離設備を用いた場合は、加熱処理後の残渣物等についてPCB濃度及びダイオキシン類等の濃度を確認しておくことが必要である。

なお、焼却実証試験を行う場合は、試験を行う前に、管轄する都道府県又は政令市と協議し、焼却実証試験の計画書を提出する等の手続きを行っておく必要がある。

2 処理条件等の設定

処理の対象とする低濃度PCB廃棄物の性状、焼却実証試験の結果等を踏まえ、施設の処理能力を考慮した受入量の設定及び施設の安全性等を考慮した供給条件、燃焼条件、排ガス処理、排水処理等の処理条件を設定することが必要である。

具体的には、焼却が安全かつ確実に進むように、実証試験等で得られた結果に基づき、低濃度PCB廃棄物の処理に応じた燃焼空気量や助燃剤等の供給量による最適な燃焼条件を設定する必要がある。また、排ガス冷却方式が湿式処理の場合の洗浄水供給量及び中和方法、乾式処理の場合の冷却水の供給量、冷却温度、消石灰や活性炭等の供給量等を勘案し、通ガス条件等の最適な排ガス処理条件、想定される排水の性状及び排水放流先の状況に応じた排水処理条件を設定する必要がある。

2.3 処理施設の構造等

低濃度PCB廃棄物の焼却施設は、受入設備、供給設備、燃焼設備、排ガス処理設備等の環境対策設備、ユーティリティ設備その他の設備からなる。産業廃棄物処理施設の許可の基準としては、法第15条の2に規定され、規則第12条(産業廃棄物処理施設のすべてに共通の基準)及び規則第12条の2(産業廃棄物処理施設の個別の基準)で産業廃棄物処理施設の技術上の基準が定められている。

また、法第 15 条の 4 の 4 に基づく低濃度 P C B 廃棄物に係る無害化処理の認定を行う際の無害化処理の内容の基準、無害化処理を行い、又は行おうとする者の基準及び無害化処理の用に供する施設の基準は、低濃度ポリ塩化ビフェニル廃棄物に係る無害化処理の内容等の基準等(平成 21 年環境省告示第 69 号。以下、「告示」という。)に定められている。

以下では、低濃度PCB廃棄物の焼却処理に当たり、これらの基準を遵守する他、 安全かつ確実に処理を行うために必要な事項を具体的にまとめている。

1 共通事項

1) 処理能力

低濃度PCB廃棄物と他の産業廃棄物との混焼の場合は、その発熱量等が異なるため、処理能力に応じた低濃度PCB廃棄物を安定して供給することが必要である。

この際に、燃焼設備の処理能力だけでなく、排ガス処理設備や排水処理設備等の環境対策設備の処理能力についても、公害関係法令等に基づく排ガスの排出基準や放流水の排水基準等を遵守できるものとする必要がある。

2) 構造耐力上の安全確保

自重、積載荷重その他の荷重、地震力及び温度応力に対して構造耐力上安全であること。 (規則第12条第1号)

低濃度PCB廃棄物を処理する焼却施設は、自重、積載荷重その他の荷重、地震力、 温度応力に対して構造上安全であることが必要である。

特に、工程ごとに想定される異常な運転状態(異常高温、失火等の異常低温、圧力上昇、不完全燃焼、水量不足など)の場合にも対応可能な設備であることが必要である。また、各設備内に設置する温度計その他の計器類の振動や高温などによる破損にも注意することが必要である。

3)腐食防止

産業廃棄物、産業廃棄物の処理に伴い生ずる排ガス及び排水、施設において使用する薬剤等による腐食を防止するために必要な措置が講じられていること。

(規則第12条第3号)

低濃度PCB廃棄物等の処理に伴い生成する塩素ガスや塩化水素ガス等の腐食性が高いガス、中和等に使用する酸やアルカリ等の腐食性が高い薬剤や洗浄水等と接触する設備(供給設備、燃焼設備、排ガス処理設備等の環境対策設備、受入設備、配管類等)は、性状に応じた腐食防止対策がなされていることが必要である。

- 4) 飛散、流出、浸透の防止及び悪臭の発散防止
- ・保管施設を有する場合には、特別管理産業廃棄物(低濃度PCB廃棄物※)が飛散し、 流出し、及び地下に浸透し、並びに悪臭が発散しないように必要な措置を講じ、かつ、 特別管理産業廃棄物に他の物が混入するおそれがないように仕切り等が設けられた 施設であること。

(規則第10条の17第1号イ(11)

(※ 告示第4条第2号)

・産業廃棄物の飛散及び流出並びに悪臭の発散を防止するために必要な構造のもので あり、又は必要な設備が設けられていること。

(規則第12条第4号)

・事故時における受入設備からの廃油の流出を防止するために必要な流出防止堤その他 の設備が設けられ、かつ、当該施設が設置される床又は地盤面は、廃油が浸透しない 材料で築造され、又は被覆されていること。

(規則第12条の2第5項第2号)

低濃度PCB廃油等の液状の廃棄物が入ったドラム缶等を保管する場合は、オイルパンの上に置く等、内容物の流出を防止するための対策を施して保管することが必要である。また、低濃度PCB廃棄物を他の物と混在させることのないように仕切り等を設けることが必要である。

微量PCB汚染廃電気機器等からの微量PCB汚染絶縁油の排出時や低濃度PCB 廃棄物の他の容器への移し替え時には、低濃度PCB廃棄物の飛散・流出等のリスク が考えられることから、特に留意が必要である。具体的には、抜油作業時や受入タン クへの移送時のホースの接続不良やホースからの液だれに備えて接続部の下にオイル パンを置くこと、また低濃度PCB廃棄物の他の容器への移し替え作業時には当該作 業場所にオイルパンやシート等を敷くこと等の対策を講ずる必要がある。

また、事故時に低濃度PCB廃棄物が飛散・流出することを防止するために、受入 設備や供給設備等には流出防止堤(溝)等の流出防止対策が施されていることが必要 である。

加えて、降雨、降雪、強風時等に受入作業を行う場合は、受入設備に屋根掛け、防風柵設置等の対策を施すことが望ましい。なお、暴風雨や事故・天災時には、受入を中止することが必要である。

その他、地下浸透による土壌及び地下水の汚染防止のため、低濃度PCB廃油の受入設備や供給設備等が設置される床又は地盤面は、コンクリートやタイル等の浸透防止材料により築造するか、又は床面をエポキシ樹脂等の不浸透材料で被覆する等の対策が行われていることが必要である。

さらに、廃油や薬剤等で悪臭発生のおそれのあるものを取り扱う場合は、悪臭の発生防止及び拡散防止対策を講じることが必要である。

なお、低濃度PCB廃油の受入タンクからのベントガスや抜油施設等からの排気については、取り扱う低濃度PCB廃油のPCB濃度に応じて排気の処理施設を設置することが適当である。

2 受入設備

産業廃棄物の受入設備及び処理された産業廃棄物の貯留設備は、施設の処理能力に 応じ、十分な容量を有するものであること。

(規則第12条第7号)

低濃度PCB廃棄物の受入設備は、燃焼設備等の安定的な稼働に必要な供給量が確保できるよう、また、搬入される低濃度PCB廃棄物が余裕を持って受け入れることができるよう、十分な容量とすることが必要である。また、燃え殻やばいじんの貯留設備は、その排出量や搬出量を踏まえ、余裕を持って保管できるよう、十分な容量とすることが必要である

3 供給設備

外気と遮断された状態で、定量ずつ連続的に産業廃棄物を燃焼室に投入することができる供給装置が設けられていること。

(規則第4条第1項第7号イ、第12条の2第5項)

供給設備は、PCB等が飛散しないよう、低濃度PCB廃棄物を外気と遮断された状

態で、定量ずつ連続的に燃焼室へ供給できるものであることが必要である。特に、低濃度PCB廃油の供給ポンプや供給配管等の設備は、その設置時に、気密試験等によって漏れがないことを確認されたものであることが必要である。

低濃度PCB廃油を燃焼室に投入するためのバーナーは、その廃油を完全燃焼させるため、燃焼室に噴霧する油の粒径を微細にできるものであること、また、油中の夾雑物によるバーナーの詰まりを防止できるフィルターが設けられていることが必要である。

4 燃焼設備等

燃焼室は、以下の要件を備えていること。

- ・外気と遮断されたものであること。
- ・燃焼ガスの温度が 1,100℃ (環境大臣が定める産業廃棄物 (※微量 P C B 汚染廃電気機器等及び P C B の量が 1 kgにつき 5,000 mg以下の低濃度 P C B 含有廃棄物) にあっては 850℃) 以上の状態で産業廃棄物を焼却することができるものであること。
- ・燃焼ガスが 1,100℃ (環境大臣が定める産業廃棄物 (※微量 P C B 汚染廃電気機器等及び P C B の量が 1 kgにつき 5,000 mg以下の低濃度 P C B 含有廃棄物) にあっては850℃) 以上の温度を保ちつつ、2 秒以上滞留できるものであること。
- ・燃焼ガスの温度を速やかに 1,100℃ (環境大臣が定める産業廃棄物 (※微量 P C B 汚 染廃電気機器等及び P C B の量が 1 kgにつき 5,000 mg以下の低濃度 P C B 含有廃棄物) にあっては 850℃) 以上にし、及びこれを保つために必要な助燃装置が設けられていること。
- ・燃焼に必要な量の空気を供給できる設備(供給空気量を調節する機能を有するものに限る。)が設けられていること。
- ・燃焼中の燃焼ガスの温度を連続的に測定し、かつ、記録するための装置が設けられていること。

(規則第4条第1項第7号、第12条の2第5項)

ただし、法第15条の4の4に基づく低濃度PCB廃棄物の処理に係る環境大臣の認定を受けようとする場合の要件は、温度及び滞留時間については、上記に関わらず下記によることとする。

- 外気と遮断されたものであること。
- ・低濃度 P C B 廃棄物を無害化処理を行うことができる温度以上の状態で焼却することができるものであること。
- ・無害化処理を行うことができる温度を低濃度PCB廃棄物の無害化処理に必要な滞

留時間の間保つことができるものであること。

- ・燃焼ガスの温度を速やかに無害化処理を行うことができる温度以上にし、及びこれ を保つために必要な助燃装置が設けられていること。
- ・燃焼に必要な量の空気を供給できる設備(供給空気量を調節する機能を有するものに限る。)が設けられていること。
- ・燃焼中の燃焼ガスの温度を連続的に測定し、かつ、記録するための装置が設けられていること。

(規則第4条第1項第7号、第12条の2第5項、告示第6条)

1) 燃焼設備

低濃度 PCB 廃棄物を焼却する燃焼設備は、燃焼ガスが外部に出ないようにするため、外気と遮断された構造であることが必要である。また、低濃度 PCB 廃棄物の確実な分解のため、燃焼ガスの温度を 850 $^{\circ}$ $^{\circ}$

ただし、法第 15 条の 4 の 4 に基づき、低濃度 P C B 廃棄物の処理に必要な環境大臣の認定を受けようとする場合は、温度及び滞留時間については、無害化処理を行うことができる温度を無害化処理に必要な滞留時間の間保つことができる構造とし、燃焼ガスの温度を無害化処理することができる温度以上に保つことができる助燃装置が設けられていることが必要である。

燃焼設備では、低濃度 P C B 廃棄物の熱分解とともに、その不完全燃焼によって生成する可能性があるダイオキシン類の発生抑制対策が必要である。ダイオキシン類は不完全な燃焼過程及びそれに続く燃焼ガスの冷却又は処理の過程で生成するといわれている。例えば、燃焼温度が低い場合や空気と焼却対象物との混合が不十分な場合の火炎中には、ベンゼンや多環芳香族化合物等(ダイオキシン前駆体)が多量存在し、これらが後の工程においてダイオキシン類生成の原因となる。このため、燃焼設備における低濃度 P C B 廃棄物の確実な分解とダイオキシン類の発生抑制のためには、十分な燃焼温度(Temperature)、滞留時間(Time)、混合(Turbulence)が必要となる。特に低濃度 P C B 廃油の燃焼においては、燃焼設備が以下のような構造となっていることが必要である。

- a. バーナーが油の粒径を微細にして噴射できるものであること。
- b. 吸気を乱流状態で行い、燃焼室内はデッドゾーンのできにくい構造であること。
- c. 各バーナーからの噴霧液滴が相互干渉を起こさないように、焼却炉の寸法並びに バーナーの配置が決められていること。

さらに、燃焼設備の運転管理を確実に行うためには、低濃度PCB廃油の供給量、 空気供給量及び燃焼ガス温度の連続記録計が設置されていることが必要である。

2) 加熱分離設備(固定床炉等)

変圧器やコンデンサー等の微量PCB汚染廃電気機器や低濃度PCB廃油等を収納していたドラム缶等の低濃度PCB含有汚染物を加熱してPCBをガス化し分離する設備においては、次の設備が必要である。

- a. 加熱し発生したガスが外部に出ないようにするため、外気と遮断された構造である こと。
- b. 加熱分離設備には、低濃度 P C B 汚染物から P C B をガス化して分離することができる温度以上に加熱できるバーナー等の加熱設備を設置していること。
- c. 加熱分離設備で廃電気機器等が加熱されて発生したガスは、燃焼設備の二次燃焼室等へ導入され、その燃焼ガスが850℃以上の温度を保ちつつ、ガスの滞留時間が2秒以上確保できるか、または無害化処理を行うことができる温度を無害化処理に必要な滞留時間の間保つことができる構造であること。
- d. 加熱分離設備内の温度を連続的に測定し、かつ記録するための装置が設けられていること。

5 環境対策設備

1) 排ガス処理設備

排ガス処理設備は以下の要件を備えていること。

- ・集じん器に流入する燃焼ガスの温度をおおむね200℃以下に冷却することができる冷却設備が設けられていること。ただし、集じん器内で燃焼ガスを速やかにおおむね200℃以下に冷却することができる場合にあっては、この限りではない。
- ・集じん器に流入する燃焼ガスの温度(集じん器内で燃焼ガスの温度を速やかにおおむね200℃以下に冷却できる場合にあっては、集じん器内で冷却された燃焼ガスの温度)を連続的に測定し、かつ、記録するための装置が設けられていること。
- ・焼却施設の煙突から排出される排ガスによる生活環境保全上の支障が生じないように することができる排ガス処理設備(ばいじんを除去する高度の機能を有するものに限 る。)が設けられていること。

・焼却施設の煙突から排出される排ガス中の一酸化炭素の濃度を連続的に測定し、かつ、 記録するための装置が設けられていること。

(規則第4条第1項第7号二、ホ、ヘ、ト、第12条の2第5項)

燃焼ガスの冷却または処理の過程において、ベンゼンや多環芳香族化合物(ダイオキシン前駆体)と塩素化合物が存在し、燃焼ガスの温度が 300~500℃である場合は、これらの物質によりダイオキシン類等が生成しやすい。これを防ぐため、集じん器内で燃焼ガスの温度をおおむね 200℃以下に冷却できる場合以外は、集じん器に流入する燃焼排ガスの温度をおおむね 200℃以下まで急冷却させる冷却設備が設置されていることが必要である。また、集じん器に流入する燃焼ガスの温度か集じん器内で冷却された燃焼ガスの温度を連続的に測定し、かつ、記録するための装置が設けられていることが必要である。

排ガス処理設備としては、ばいじんや塩素、塩化水素を除去する高度の機能を有するものとして、アルカリ水溶液による湿式洗浄設備や乾式の消石灰等の噴霧設備等が設けられていることが必要である。このうち、湿式洗浄設備では、洗浄液のpH低下等に対処するため、設備に耐酸性材料が使用されているとともに、中和設備が付加されていることが必要である。

また、焼却施設の煙突から排出される排ガス中の一酸化炭素の濃度を連続的に測定し、かつ記録するための装置が設けられていることが必要である。測定装置は、JIS-B 7951 (又は JIS B 7978) に規定するものとし、排ガス中の酸素濃度を 12%に換算できるものであることが必要である。(「廃棄物の処理及び清掃に関する法律施行令の一部改正等について」(平成 9 年 9 月 30 日衛環第 251 号、各都道府県・政令市廃棄物主管部(局)長宛厚生省生活衛生局水道環境部環境整備課長)を参照。)

2) ばいじん、焼却灰の処理設備

ばいじん、焼却灰処理設備は以下の要件を備えていること。

- ・ばいじんを焼却灰と分離して排出し、貯留することができる灰出し設備及び貯留設備 が設けられていること。
- ・灰出し設備はばいじん又は焼却灰が飛散し、及び流出しない構造のものであること。 (規則第4条第1項第7号チ、リ(1)、規則第12条の2第5項)

低濃度PCB廃棄物の焼却によって生じた焼却灰(燃え殻)と集じん器等により捕集されたばいじんは、各々その性状が異なることを踏まえた管理が求められる。そのため、ばいじんと焼却灰を分離して排出し、貯留することができる灰出し設備及び貯留設備を設けることが必要である。また、灰出し設備及び貯留設備は、焼却灰やばい

じんが飛散し、及び流出しない構造(コンクリート製または金属製の囲いや屋根)で あることが必要である。

3) 排水処理設備

施設から排水を放流する場合は、その水質を生活環境保全上の支障が生じないものと するために必要な排水処理設備が設けられていること。

(規則第12条第6号)

低濃度PCB廃棄物の焼却施設において排水が発生し、当該排水を放流する場合は、 水質汚濁防止法、下水道法及びダイオキシン類対策特別措置法等の規定を遵守するために必要な排水処理設備を設けることが必要である。

また、排水が発生しない焼却施設であっても、雨水への低濃度PCB廃油の流入を防止することが必要である。このため、屋外で低濃度PCB廃油を取り扱う設備については、雨水の流入を極力防止するような構造とするとともに、やむを得ず流入した雨水を貯留するための雨水枡等を設置するものとし、貯留した雨水に油膜がないこと等を確認した上で放流する必要がある。

4) 騒音・振動の防止対策

著しい騒音及び振動を発生し、周囲の生活環境を損なわないものであること。

(規則第12条第5号)

設置する設備の騒音の発生状況を踏まえ、設備を建屋内に設置することや、低騒音型の設備を採用すること等により、著しい騒音を発生し、周囲の生活環境を損なわないものであることが必要である。

また、設置する設備等の振動の発生状況を踏まえ、防振効果のある設備や低振動型の機器を採用すること等により、著しい振動を発生し、周囲の生活環境を損なわないものにすることが必要である。

6 分析設備

・廃ポリ塩化ビフェニル等、ポリ塩化ビフェニル汚染物又はポリ塩化ビフェニル処理物の処分を業として行う場合には、当該廃ポリ塩化ビフェニル等、ポリ塩化ビフェニル汚染物又はポリ塩化ビフェニル処理物の処分に適する焼却施設、分解施設、洗浄施設、分離施設その他の処理施設であって、処分する廃ポリ塩化ビフェニル等、

ポリ塩化ビフェニル汚染物又はポリ塩化ビフェニル処理物の性状を分析することの できる設備を備えたものを有すること。

(規則第10条の17第1号イ(5))

・ 処分する低濃度ポリ塩化ビフェニル廃棄物の性状を分析することのできる設備が設けられていること。

(告示第4条第1号)

低濃度PCB廃棄物の確実な無害化及び処理に伴って生じた産業廃棄物の適正処理を進めるため、受け入れる低濃度PCB廃棄物の性状を把握するための分析設備を設置することが必要である。

なお、日常的な管理のための分析には、その管理に必要な精度を有する簡易な分析 方法によることも可能である。

7 異常発生の防止対策

処理施設内で発生する異常に適切に対応するため、燃焼設備や排ガス処理設備等において、異常発生の防止や異常発生時に速やかに対応できるための対策が講じられていることが必要である。具体的には、以下のような対応をとることが考えられる。

- 1) 処理施設の各設備は、故障やヒューマンエラーの発生しにくい構成、構造のものとする。
- 2) 安定運転のため、供給設備や燃焼設備は主として自動制御を行うものとする。
- 3) 燃焼設備における焼却室内の温度や圧力、排ガス中の一酸化炭素濃度、排水が発生 する場合は排水中のpH 等の異常を検知し、その異常を周知するための警報装置を設 ける。
- 4) 停電時に設備を安全に停止させるために必要な設備等を設ける。また、停電復帰後 に人の確認なく運転再開ができない設備とする。
- 5) 施設内の設備等の異常を検知した際、関係する設備が自動で安全側に作動するシステム(フェールセーフ)を設ける。
- 6) 手順ミスによる異常発生を防止するためのインターロックシステムを設ける。

2. 4 処理施設の維持管理等

低濃度PCB廃棄物の焼却施設に係る維持管理の技術上の基準は、法第15条の2の3に基づいて、規則第12条の6 (産業廃棄物処理施設の維持管理の技術上の基準のうちすべてに共通する基準)及び規則第12条の7 (産業廃棄物処理施設の個別の基準)に定められている。

また、法第15条の4の4に基づく低濃度PCB廃棄物の無害化処理の認定の特例に係る当該無害化処理の用に供する施設の維持管理の基準は告示第5条に定められている。

以下では、低濃度PCB廃棄物を焼却処理するに当たり、これらの基準を遵守する他、安全かつ確実な処理を行うために必要な事項を具体的にまとめている。特に低濃度PCB廃棄物のうち、低濃度PCB含有廃棄物については、PCB濃度が数 mg/kg~数十 mg/kg程度の微量PCB汚染廃電気機器等とは異なり、PCB濃度が数千 mg/kg から数万 mg/kgに及ぶものがあり、また、性状や成分等が多岐にわたることから、取り扱いには特に留意が必要である。したがって、低濃度PCB含有廃棄物の受入及び供給に当たっては、微量PCB汚染廃電気機器等とは異なる配慮が必要になる。以下では、これらを分けて留意すべき事項を示すこととする。

1 受入

受け入れる産業廃棄物の種類及び量が当該施設の処理能力に見合った適正なものとなるよう、受け入れる際に、必要な当該産業廃棄物の性状の分析又は計量を行うこと。 (規則第12条の6第1号)

1) 事前確認

低濃度PCB廃棄物の処理に当たっては、排出事業者(保管事業者)と事前に書面により処理委託契約を締結しなければならない。契約に際しては、焼却施設の処理能力等をもとに設定した低濃度PCB廃棄物のPCB濃度、成分、寸法、重量等の性状に関する受入基準に適合していることを事前に確認することが必要である。

確認すべき性状は、次のような項目が挙げられる。

- ①微量PCB汚染絶縁油の場合
 - イ 微量PCB汚染絶縁油の由来(微量PCB汚染廃電気機器等の種類)
 - PCBが使用された絶縁油でないことを確認する。
 - ロ 微量PCB汚染絶縁油中のPCB濃度
 - ・排出事業者から提出された分析結果を確認する。
 - ・排出事業者から提出された分析結果のみによって受入基準への適合性等が確認 できない場合は、微量PCB汚染絶縁油のPCB濃度の分析を行う。

- ハ 引火点の低い灯油等の混合の有無
- ニ 水分や夾雑物の混入の有無
- ②微量 P C B 汚染物 (紙くず・木くず・繊維くず・廃プラスチック類等の固形可燃物)及び 絶縁油封じ切り又は小型の微量 P C B 汚染廃電気機器等の場合
 - ・紙くず・木くず・繊維くず・廃プラスチック類等の固形可燃物や小型の廃電気機器等を収納した容器が、例えば密閉性プラスチック容器等の開封することができないものであった場合には、それらの状態を直接確認できないため、排出事業者からPCB濃度やその由来等の情報を事前に入手するなどして確実に微量PCB汚染絶縁油由来のものであることを確認する。
 - ・絶縁油封じ切りのコンデンサー等や絶縁油の封入量が少量で抜油されていない小型の廃電気機器等であって、PCB濃度の分析結果がないものについては、銘板情報等から確実にPCBが使用された絶縁油に由来するものでないことを確認する。ただし、焼却施設で受け入れ可能な絶縁油中PCB濃度に上限を設けている場合には排出事業者からPCB濃度に関する分析結果等を入手するなどして確認する。

③低濃度 P C B 含有廃油の場合

イ 種類及び性状

- ・低濃度PCB含有廃油の成分に関する情報を入手して低位発熱量、含水率、粘度等を確認する。低濃度PCB含有廃油を微量PCB汚染絶縁油とともに受入タンクに混合して保管する場合は、受入タンク内で低濃度PCB含有廃油と微量PCB汚染絶縁油が分離し、廃油を燃焼室に噴霧する際に安定した燃焼が行われないことがあるので、特に留意して性状を確認する。
- ・取扱い上留意を要する引火性、腐食性等の成分が含まれていないかを確認する。
- ・廃油を燃焼室に投入するバーナーを閉塞させるような夾雑物が含まれていない かを確認する。

ロ PCB濃度

- ・排出事業者から提出された分析結果を確認し、PCB濃度が 5,000mg/kg 以下であることを確認する。
- ・排出事業者から提出された分析結果のみによって受入基準への適合性等が確認できない場合は、廃油中のPCB濃度の分析を自ら行うか、再度分析を行うことを排出事業者に要請してその結果を入手する等して、確実にPCB濃度を把握する。

④低濃度 P C B 含有汚染物の場合

イ 種類及び性状

・低濃度 P C B 含有汚染物の種類と性状に関する情報を事前に入手して処理施設 に受入可能なものであることを確認する。 ・低濃度PCB含有汚染物を保管場所にて目視で、種類・数量等を確認する。ドラム缶等に複数の種類のものが収納され保管されている場合は、内容物に処理できない異物等が含まれていないかを確認する。すでに密閉性プラスチック容器等の開封困難な容器に収納されている場合は、管理台帳や表示等(種類、重量等)を確認して内容物が自社に受け入れて処理可能なものであるかを確認する。また、蓋の封止状況、容器の変形、容器表面の汚れ等が無いか等を確認し、不適切な場合は排出事業者に改善を要請する。

口 PCB濃度

- ・排出事業者から提出された分析結果を確認し、PCB濃度が 5,000mg/kg以下又は 100,000mg/kg以下であることを確認する。分析結果の確認に際しては、分析結果の妥当性を把握するために検体の採取位置や採取方法についても確認することが望ましい。なお、可塑剤にPCBを使用して製造された塗料が塗られた塗膜くず及びカプセルオイルにPCBを使用して製造された廃感圧複写紙は、その由来からPCB濃度はほとんどが 100,000mg/kg 以下であるとされている。
- ・排出事業者から提出された分析結果のみによって受入基準への適合性等が確認できない場合は、低濃度PCB含有汚染物中のPCB濃度の分析を自ら行うか、再度分析を行うことを排出事業者に要請してその結果を入手する等して、確実にPCB濃度が5,000mg/kg以下又は100,000mg/kg以下であることを把握する。

⑤低濃度 Р С В 処理物の場合

④の低濃度 P C B 含有汚染物の場合と同様に扱う。

2) 受入時の確認

低濃度PCB廃棄物の受入に当たっては、受入タンクや保管倉庫の保管容量を超えないように事前に確認の上で受入のスケジュール(受入日、受入時間等)を組み、受入量が受入可能な範囲内であることを併せて確認することが必要である。また、受入時は、受け入れるものの数量及び荷姿等が処理委託契約した排出事業者からのものと相違ないか確認し、事前に把握していた仕様、数量及び荷姿等と異なるものである場合は、受け入れないことが必要である。特に受入設備に余裕がないにも関わらず受入を行うことや、認められた受入設備以外で保管することをしてはならない。この他、ドラム缶や鉄箱等の収納容器に収納されたものを受け入れる場合は、収納容器からの漏えいがないか確認してから受け入れることが必要である。

また、低濃度PCB廃棄物を受け入れる者は、収集運搬業者からマニフェストを受け取り、処分が終了したら、当該マニフェストの写しをマニフェスト交付者に送付することが必要である。

3) 受入時の立会

低濃度PCB廃棄物を受け入れる時は、収集運搬業者の収集・運搬の運行管理責任者又はその職務を代行する者と、処分業者の処理施設の管理責任者又はその職務を代行する者の双方の責任ある者が立ち会い、漏えい等がないか、適切な荷役が行われているか、委託契約書の内容と相違がないか等について確認することが必要である。また、受入時の作業については、その責任分担を明確にしておくことも必要である。

さらに、受入作業に支障を及ぼすほどの悪天候時には受入作業を行わないとする判断を速やかに下すことも漏えい等の事故を防止する上で重要である。そのために、受入停止の判断基準及びその判断を決定する責任者等をあらかじめ定めておき、事前にその条件等を収集運搬業者に通知しておくことも必要である。

4) 受入時の漏えい・飛散・流出防止

①低濃度PCB廃油の受入タンクへの移送時の漏えい等防止

- ・低濃度 P C B 廃油をタンクローリーやドラム缶等*1から受入タンクに移送する場合は、作業環境基準に留意しつつ、人の健康又は生活環境に係る被害を生ずるおそれがないよう措置を講じることが必要である。また、低濃度 P C B 廃油の受入タンクへの移送作業を行う際には、適切な保護具(保護衣、保護マスク、保護メガネ、耐油性ゴム手袋等)を着用して行うことが適当である。
- ・低濃度 P C B 廃油をタンクローリーから受入タンクに移送する場合は、タンクローリーと受入タンクの接続口の直下にオイルパン等を置いて行う必要があり、タンクローリーのノズルを接続口から離す時は、ホース先の油切りを十分に行う等、接続口からの低濃度 P C B 廃油の漏えいがないよう注意して行うことが必要である。
- ・低濃度 P C B 廃油をドラム缶等で受け入れて受入タンクに移送する場合は、低濃度 P C B 廃油の浸透防止対策が施された防油堤内に設置されている固定式のポンプを 使用することが望ましい。やむを得ず、移動式ポンプにより行う場合は、ポンプと 受入タンクの接続口の直下にオイルパン等を置いて行うことが必要である。また、ドラム缶から吸引ノズルを離す時や移動式ポンプから配管を外す時は、油切りを十分に行う等、吸引ノズルや配管からの低濃度 P C B 廃油の漏えいがないよう注意して行うことが必要である。
- ・低濃度PCB廃油の受入時には、万一の漏えいに備え、オイルマットやウエス等を 用意するとともに、作業員が常時立ち会って漏えいの有無を確認することが必要で ある。また、万一、低濃度PCB廃油が漏えいした場合には、受入を中断するとと もに、オイルマット等で漏えいの拡散を防止し、トルエン等の溶媒を浸したウエス 等で漏えいした低濃度PCB廃油を拭き取る等の措置を行うことが適当である。漏 えいした低濃度PCB廃油を拭き取ったウエスや低濃度PCB廃油が付着した吸着 材及び保護具等は、別途低濃度PCB汚染物として無害化処理施設で適正に無害化

処理する必要がある。

- *1低濃度PCB廃油を受入タンクに移送した後のドラム缶等(再度容器として使用しない場合)は、低濃度PCB汚染物として適正に無害化処理する必要がある。
- ②低濃度PCB汚染物及び処理物の保管倉庫等への受入時の飛散・流出防止
 - ・低濃度PCB汚染物及び低濃度PCB処理物を収納した密閉性プラスチック容器やドラム缶等を受け入れる場合は、容器の蓋が確実に装着されていること、容器に変形や割れが無いこと、内容物がこぼれ出ていないこと、容器表面に汚れが無いこと等を個別に確認して受け入れることが必要である。受け入れた容器にこれらの不具合が認められた場合は、容器全体を収納できるポリ袋等に入れて封じる等の対策が必要である。
- ③低濃度 P C B 廃棄物の炉投入用容器等への移し替え時の漏えい・飛散・流出防止
 - ・低濃度PCB廃棄物を収納したドラム缶等を受け入れて、焼却炉への投入に適した 密閉性プラスチック容器等に移し替えて小分けする作業では、当該廃棄物の漏え い・飛散・流出がないように十分注意しながら行うことが必要である。具体的には、 屋内の施設内に移し替え作業を行うに足る必要十分なスペースを確保して専用の作業室を設け、その中の床をコンクリートやタイル等の浸透防止材料により築造する か、又はエポキシ樹脂等の不浸透材料で被覆する等の対策を行い、さらにオイルパン等を置いて、その上に低濃度PCB廃棄物を収納したドラム缶等や密閉性プラスチック容器等を載せて作業することが適当である。また、移し替え作業場所は局所 排気又は十分な換気を行うとともに、取り扱う低濃度PCB廃棄物のPCB濃度によっては、排気を活性炭吸着処理して屋外に排出することが望ましい。さらに、移し替え作業時に低濃度PCB廃棄物が飛散した場合は、都度回収して放置しないようにする等、移し替え作業場所の内部を常に清浄に保つ必要がある。
 - ・低濃度PCB廃棄物の移し替え作業を行う際の作業従事者へのPCBの暴露を防止するために、作業従事者は適切な保護具(呼吸用保護具、保護衣、保護手袋、安全靴・保護靴、保護メガネ、耐油性ゴム手袋、保護帽、作業着等)を着用して行うことが必要である。また、作業に使用した保護具や回収した低濃度PCB廃棄物は適正に無害化処理することが必要である。
 - ・PCBをその重量の1%を超えて含有するものは特定化学物質等障害予防規則(昭和47年労働省令第39号。以下「特化則」という。)の第一類特定化学物質に指定されている。そのため、低濃度PCB含有汚染物のうち、PCB濃度が1%を超える汚泥、紙くず、木くず、繊維くず又は廃プラスチック類をプラスチック容器等に移し替える作業等では、作業従事者のPCBのばく露防止の観点から、特化則及び労働安全衛生法(昭和47年法律第57号)等に沿ってその取扱い方法等を具体的に定めた「PCB廃棄物の処理作業等における安全衛生対策要綱」(平成17年2月10日厚生労働省労働基準局長通知、基発第02100005号)の「処理等作業」に定める措置

に準じて以下の対策を講ずる必要がある。加えて、これらの移し替え作業においてはコプラナーPCB由来のダイオキシン類を含む粉じんの発生するおそれがあるため、ダイオキシン類のばく露防止についても併せて対策する必要がある。粉じんに含まれるダイオキシン類のばく露防止に係る具体的な措置については、「廃棄物焼却施設関連作業におけるダイオキシン類ばく露防止対策要綱」(平成26年1月10日厚生労働省労働基準局長通知、基発0110第1号)に定められている。PCB汚染物の移し替え作業は焼却前に行われる作業ではあるが、同要綱の「運転、点検等作業」に定める措置に準じて対策する必要がある。

- (1) 特定化学物質等作業主任者及び作業指揮者の選任
- (2) 安全衛生教育の実施
- (3) 特殊健康診断の実施

必要があると認められる作業従事者に対して、最初の作業を開始する前及び作業期間中に血中のPCB及びダイオキシン類の濃度測定を行うよう努めること。当該濃度測定を実施した場合は、その結果を記録して30年間保存すること。PCB等のばく露があった場合は、遅滞なく医師による診察又は措置を受けさせ、必要に応じて血中のPCB及びダイオキシン類の濃度測定を行い、その結果を記録して30年間保存すること。

(4) 就業上の配慮

女性の作業従事者については、母性保護の観点から「女性労働基準規則」に従う 等、PCB等のばく露の可能性が高い作業を行う場合に就業上の配慮を行うこと。

(5) PCB及びダイオキシン類の作業環境濃度の測定

移し替え作業等を行う場所の空気中のPCB及びダイオキシン類の濃度を移し替え対象のPCB汚染物の種類ごとに作業環境測定基準(昭和51年労働省告示第46号)に基づいて測定を行い、作業環境評価基準(昭和63年労働省告示第79号)に基づいて評価を行うこと。なお、空気中のダイオキシン類の作業環境濃度の測定では、粉じん、ガス状物質及び微細粒子の濃度の合計を測定結果とすること。評価の結果、作業環境管理濃度*を超え、当該作業場所が第三管理区分(PCBの場合、以下同じ。)又は第三管理区域(ダイオキシン類の場合、以下同じ。)に該当する場合は、施設、設備、作業工程又は作業方法の点検を行い、その結果に基づいて局所排気装置の制御風速の増加、開口面の形状の改善その他作業環境を改善するための必要な措置を講ずること。なお、作業環境濃度測定は6か月以内ごとに1回、定期的に実施し、その結果はPCBについては3年間、ダイオキシン類については測定方法や条件等の情報とともに30年間保存すること。

※ 作業環境管理濃度: PCB 0.01mg/m³、ダイオキシン類 2.5pg-TEQ/m³

(6) 適切な呼吸用保護具、不浸透性の保護衣、保護手袋、保護長靴等の着用 特定化学物質等予防規則第 43 条及び第 44 条並びに労働安全衛生規則第 592 条の 5の規定に基づき、移し替え作業等を行う場所に呼吸用保護具、不浸透性の保護 衣、保護手袋、保護長靴等を備え付け、作業従事者にPCB及びダイオキシン類 の管理レベルに応じた保護具を着用させること。

なお、当該作業場所が第一管理区分又は第一管理区域に区分されることを確認するまでの間は、作業場所に立ち入る作業従事者に呼吸用保護具として「廃棄物焼却施設関連作業におけるダイオキシン類ばく露防止対策要綱」別紙3に規定するレベル3の全面形面体のプレッシャデマンド形エアラインマスク又はプレッシャデマンド形空気呼吸器を着用させること。その後、第一管理区分又は第一管理区域に区分されることが確認された後はレベル1の防じんマスク又は電動ファン付き呼吸用保護具を着用させること。

(7) 局所排気装置等の設置等

①ばく露防止対策の基本的考え方

移し替え作業等を行う場所におけるばく露防止対策としては、局所排気装置等及び保護具の使用のほか、作業内容によってはグローブボックス内での作業を行うこと。粉じんが発生し飛散するおそれがあるPCB汚染物の移し替え作業では、ダイオキシン類を含む粉じんの作業室内への発散を抑えるため、これらを湿潤化させてから扱うこと。ただし、湿潤化させることが困難な場合にはドラム缶等の収納容器からプラスチック容器にPCB汚染物を移し替える際の開口部の面積を極小化するとともに、外気に触れる時間を極力少なくすること。

②局所排気装置等の設置

移し替え作業等を行う場所には、密閉設備、局所排気装置又はプッシュプル型換気装置を設けること。局所排気装置を用いる場合は囲い式フードを設置し、作業性を確保しつつ開口面において十分な制御風速を確保して、作業環境管理濃度である 0.01mg/m³が達成できるものとすること。またプッシュプル型換気装置を用いる場合は、プッシュ気流とプル気流の流量比を検討し、できるだけ効率の良い流量比を設定するとともに、捕捉面での風量を 0.2m/秒以上確保することで同様に 0.01mg/m³が達成できるものとすること。局所排気装置又はプッシュプル型換気装置の排気は除じん設備及び活性炭フィルター等の空気清浄装置を介して外部に排出するか、又は焼却炉の燃焼用空気に合流させて焼却すること。

(8) 作業マニュアルの策定、保守点検の実施

・低濃度PCB含有汚染物のうち、塗膜くずには防錆剤に由来する鉛及びクロムが含有されているものがある。特に鉛は鉛中毒予防規則(労働省令第37号、昭和47年9月30日)で規制されており、塗膜くずの密閉性プラスチック容器への詰替え作業においては、同規則にも留意して取り扱う必要がある。

5) 保管

消防法の危険物に該当する低濃度PCB廃棄物を指定数量又は市町村条例により定める数量以上保管する場合は、同法又は同条例で定める貯蔵所の位置、構造及び設備の基準を満たすタンク又は貯蔵所において、同法又は同条例に規定された貯蔵及び取扱の基準に従って適正に保管する必要がある。

また、これらの保管場所では、他の廃棄物や危険物と区分して保管し、間違えることのないように微量PCB汚染廃電気機器等の本体又はドラム缶や鉄箱等の胴体等にわかりやすく表示を行う必要がある。

さらに、低濃度PCB廃油が万一漏えいしても地下浸透しないよう、これらをオイルパンの上に置くか、不浸透性材料で覆われた床面あるいは耐油性シート等を敷いた床面の上で保管する必要がある。

なお、低濃度 P C B 廃棄物の保管に当たっては、その数量が処理施設の 1 日当たりの処理能力に相当する数量に 14 を乗じて得られる数量を超えないようにすることが必要である。

低濃度PCB廃棄物を適正に管理するため、保管施設ごとに帳簿を備え、下記の事項を記録しておく必要がある。

- ①低濃度PCB廃棄物の種類、性状等
- ②搬入年月日、搬入量、搬入元
- ③保管施設での保管の位置
- ④その他特記事項(漏えい・飛散の有無の点検結果、その他対応措置等)

保管施設の安全管理を徹底するため安全管理責任者を定める等の安全管理体制を整備するとともに、低濃度PCB廃棄物の漏えい・飛散の有無の点検、漏えいがあった場合の措置方法等の日常作業の内容を定めた日常管理マニュアルや災害、事故等の緊急時における連絡網及び緊急時対応マニュアルを作成し、備え付けておくことが必要である。

2 供給

- ・施設への産業廃棄物の投入は、当該施設の処理能力を超えないように行うこと。 (規則第12条の6第2号)
- ・燃焼室への産業廃棄物の投入は、外気と遮断した状態で定量ずつ連続的に行うこと。 (規則第4条の5第1項第2号ロ、第12条の7第5項)
- ・受け入れる産業廃棄物の全部を無害化処理の用に供する施設に投入すること。

(規則第12条の12の16第3号)

燃焼設備での適切な管理を行うために、低濃度PCB廃油の場合は、受入タンク中の

PCB濃度を把握することが適当である。

施設の処理能力は、低濃度PCB廃棄物の確実な分解や処理中における人の健康又は生活環境に係る被害を生ずるおそれのないことが前提となることから、当該能力を超えないように廃棄物の投入を行うことが必要である。

また、焼却施設においては、廃棄物を完全燃焼させるために燃焼温度等の燃焼条件を一定に保つべく、燃焼室への廃棄物の投入を、外気と遮断した状態で定量ずつ連続的に行うことが必要である。そのため、低濃度PCB廃油をバーナーで供給する場合は、燃焼室内に廃油を定量ずつ投入できるように流量計や供給ポンプ等の圧力の管理を行うことが必要である。また、低濃度PCB廃油中の夾雑物によるバーナーの詰まりを防止するため、低濃度PCB廃油に含まれる夾雑物をフィルターなどで除去した後で投入する必要がある。さらに、低濃度PCB廃油を供給する配管のフランジ等の接合部からの漏えい・飛散を防止するために、例えば透明の樹脂製カバーを取り付けること等の対策が必要である。加えて、漏えい・飛散等を生じていた場合に迅速に対応できるよう、見回りの頻度を高くするとともに、対応手順等をあらかじめ定めておくことも必要である。

一方、微量 P C B 汚染絶縁油が入ったままの小型の廃電気機器等や密閉性プラスチック容器等に収納した低濃度 P C B 廃棄物を燃焼室へ直接投入する場合は、二重扉等のある設備で行い、燃焼ガスが外部へ漏えいしないことが必要である。また、密閉性プラスチック容器等の燃焼室への投入においては、安定した燃焼を確保するため、可能な限り等間隔に連続して投入することが適当である。

なお、低濃度 P C B 廃棄物の投入は、燃焼排ガスが所定の温度以上であることを確認してから行う必要がある。

低濃度PCB含有廃棄物のうち、PCB濃度が 5,000mg/kg を超える汚泥、紙くず、木くず、繊維くず又は廃プラスチック類には、特に廃感圧複写紙のように冊子状や結束されたものがあり、燃焼室内で燃え切ることが困難な形状のものがある。そのため、これらを燃焼室に投入して焼却処理する場合には、密閉性プラスチック容器にできるだけ少量を収納して一度に大量に燃焼室内に投入しないようにするとともに、混焼するその他の廃棄物に対する比率(混焼率)を抑え、投入した廃棄物を燃焼室内に十分滞留させてすべてを確実に燃え切るように管理することが重要である。

加熱分離設備内へ廃電気機器等を入れる場合は、加熱分離設備内の温度が常温程度 まで低下した状態で行い、加熱ガスが導入される二次燃焼室等とは完全に切り離され ていることが必要である。

なお、無害化処理認定制度を適用して無害化処理を行う施設にあっては、受け入れる産業廃棄物(低濃度 P C B 廃棄物)の全部を焼却施設に投入することが必要である。

3 焼却処理

- ・運転を開始する場合には、助燃装置を作動させる等により、炉温を速やかに上昇させること。
- ・燃焼室中の燃焼ガスの温度を 1,100℃ (環境大臣が定める産業廃棄物 (※微量 P C B 汚染廃電気機器等及び P C B の量が 1 kgにつき 5,000 mg以下の低濃度 P C B 含有廃棄物) にあっては 850℃) 以上に保つこと。
- ・燃焼室中の燃焼ガスの温度を連続的に測定し、かつ記録すること。
- ・煙突から排出される排ガス中の一酸化炭素の濃度が 100ppm 以下となるように産業廃棄物を焼却すること。
- ・煙突から排出される排ガス中のダイオキシン類の濃度が別表第2の上欄に掲げる燃焼室の処理能力に応じて同表の下欄に定める濃度以下となるようにごみを焼却すること。

別表第3 (※製鋼の用に供する電気炉を除く。)

1時間当たりの処理能力が4トン以上のもの	0.1 ng-TEQ/m ³ N
1時間当たりの処理能力が2トン以上4トン未満のもの	1 ng-TEQ/m³N
1時間当たりの処理能力が2トン未満のもの	5 ng-TEQ/m ³ N

・運転を停止する場合には、助燃装置を作動させる等により、炉温を高温に保ち、産業 廃棄物を燃焼し尽くすこと。

(規則第4条の5第1項第2号ホ、ト、ル、ワ、へ、第12条の7第5項)

ただし、法第 15 条の4の4に基づく低濃度PCB廃棄物の処理に係る環境大臣の認定を受けた場合、燃焼ガスの温度については、上記に関わらず下記によることとし、加えて、燃焼ガスの滞留時間についても下記によることとする。

- ・燃焼室内に投入された低濃度 P C B 廃棄物の温度を、速やかに無害化処理を行うことができる温度以上とし、これを保つこと。
- ・燃焼室内に投入された低濃度 P C B 廃棄物の数量及び性状に応じ、無害化処理に必要な滞留時間を調節すること。

(告示第5条)

1) 燃焼設備

低濃度PCB廃棄物を焼却する燃焼設備の運転を開始する場合は、ダイオキシン類や一酸化炭素の濃度を抑制するため、助燃装置の作動等により速やかに炉温を上昇させることが必要である。

低濃度PCB廃棄物の確実な分解のために、低濃度PCB廃棄物を燃焼室に直接投

入するときは、燃焼中の燃焼ガスの温度を 850°C(PCB濃度が 5,000 mg/kg を超え 100,000mg/kg 以下の汚泥、紙くず、木くず、繊維くず又は廃プラスチック類にあって は 1,100°C)以上に保ちつつ、ガスの滞留時間を 2 秒以上確保することとされている。 ただし、法第 15 条の 4 の 4 に基づく低濃度 PCB廃棄物の処理に係る環境大臣の認定を受けた場合には、燃焼室中の燃焼ガスの温度を無害化処理を行うことができる温度以上に保ちつつ、無害化処理に必要な滞留時間を確保できるように調節することが必要である。

併せて、煙突から排出される排ガス中の一酸化炭素の濃度が 100ppm 以下とすること等により、ダイオキシン類の濃度が燃焼室の処理能力に応じて定める値以下となるように焼却することが必要である。なお、施設の処理能力を踏まえて設定された別の管理値や処理条件がある場合は、その範囲内での運転管理を行うことが適当である。

また、燃焼室中の燃焼ガスの温度を連続的に測定し、かつ、記録することが必要である。特に、その機能を維持することが施設の運転管理に重要であるため、温度計のセンサー等は、定期的に点検し、整備しておくことが適当である。

運転を停止する場合には、燃焼室中の未分解の低濃度PCB廃棄物が残存することを防止するため、助燃装置を作動させる等により、炉温を高温に保ち、産業廃棄物を燃焼し尽くすことが必要である。

燃焼設備の運転中は、燃焼室内のガスが外部に排出されることを防止するために、 燃焼室内を常時負圧に圧力管理することが必要である。

2) 加熱分離設備

微量PCB汚染廃電気機器等を加熱してPCBをガス化し分離させる加熱分離設備においては、次の維持管理を行うことが必要である。

微量PCB汚染廃電気機器等を加熱分離設備に入れた後、加熱設備の作動により加熱分離設備内の加熱ガス温度をおおむね850℃以上とし、その温度を保ちつつ加熱分離するのに必要な時間加熱することが必要である。また、加熱され発生したPCBを含むガスを燃焼設備へ導入し、燃焼中の燃焼ガスの温度を850℃以上に保ちつつ、ガスの滞留時間を2秒以上確保して無害化処理することが必要である。ただし、法第15条の4の4に基づく低濃度PCB廃棄物の処理に係る環境大臣の認定を受けた場合には、燃焼室中の燃焼ガスの温度を無害化処理を行うことができる温度以上に保ちつつ、無害化処理に必要な滞留時間を確保できるように調節することが必要である。

なお、微量PCB汚染絶縁油を含むOFケーブル等のように、その内部部材の構造のため確実にPCBをガス化して分離することが難しい機器等については、塩素を含むガスが内部に滞留すること等により、冷却時にダイオキシン類が生成することがある。このため、内部から発生するガスを効率よく外部に排出させ加熱分離設備内に拡散させながら処理することが重要である。

例えば、OFケーブルの場合、下記のような対策が考えられる。

- ・OFケーブルを1m程度以下に短く切断してOFケーブル内部から発生するガスを 排出しやすくする。
- ・OFケーブルは通気性が保たれた状態で加熱分離設備内に配置する。例えば、切断したOFケーブルをトレイあるいはラック等の上に薄く重ねて (2~3段程度以下)載せることによって、OFケーブル間の通気性を保った状態で配置する。
- ・あらかじめ、加熱分離設備内でのOFケーブルの内部の温度上昇パターンを把握 しておき、無害化処理に必要な内部温度と保持時間を決めておく。
- ・OFケーブルを傾斜して配置し、内部部材の金属成分(鉛またはアルミ)をOFケーブルから効率よくかつ適正に排出させる工夫をする。

4 事故時等の対応

- ・一般廃棄物の処理施設又は産業廃棄物の処理施設で政令で定めるもの(以下この項に おいて「特定処理施設」という。)の設置者は、当該特定処理施設において破損その 他の事故が発生し、当該特定処理施設において処理する一般廃棄物若しくは産業廃棄 物又はこれらの処理に伴って生じた汚水若しくは気体が飛散し、流出し、地下に浸透 し、又は発散したことにより生活環境の保全上の支障が生じ、又は生ずるおそれがあ るときは、直ちに、引き続くその支障の除去又は発生の防止のための応急の措置を講 ずるとともに、速やかにその事故の状況及び講じた措置の概要を都道府県知事に届け 出なければならない。
- ・都道府県知事は、前項に規定する者が同項に規定する応急の措置を講じていないと認めるときは、その者に対し、当該応急の措置を講ずべきことを命ずることができる。 (法第21条の2)
- ・産業廃棄物が施設から流出する等の異常な事態が生じたときは、直ちに施設の運転を 停止し、流出した産業廃棄物の回収その他の生活環境の保全上必要な措置を講ずるこ と。

(規則第12条の6第3号)

1) 事故防止管理

施設の適正な運転管理を目頃から心がけ、日常的な設備点検により、機器の異常を早期に発見できるように努めるとともに、設備等についてのヒヤリ・ハット情報*¹を積極的に収集し、その原因を解析し、改善策をとる等により事故を未然に防止することが必要である。

*1作業中や運転中などで危険な状況が生じたことにより、ヒヤリとしたりハッとしたりしたことを記録した情報。

2) 事故時等に備えた体制の整備

施設において、万一の事故や災害等による異常な事態が生じた場合に備え、生活環境の保全上必要な対応を速やかに行うことができる体制を整えておくことが求められる。この際、「廃棄物処理施設事故対応マニュアル作成指針」(平成 18 年 12 月、環境省廃棄物・リサイクル対策部)を参考とし、事故対応の責任体制や事故発生時の対応、事故後の対応等について事前にマニュアルを作成しておくことが適当である。低濃度 P C B 廃棄物の焼却施設においては、特に下記のような内容について事前に定めておくことが適当である。

- ① 緊急時の対応を適切に行うため、夜間、休日を含めた関係者の緊急連絡体制及び責任体制を明確にしておくこと。
- ② 事故や地震、腐食等による設備の損傷に伴う低濃度 P C B 廃油の飛散・流出防止のため、オイルマット、砂、土嚢等の事故時に対応した資機材を備蓄しておくこと。
- ③ 低濃度 P C B 廃油が流出した場合の焼却設備への低濃度 P C B 廃油の供給停止 や更なる流出や火災防止のための措置等を定めておくこと。
- ④ 事故や停電時における受入設備への低濃度 P C B 廃棄物の受入停止や焼却設備 への低濃度 P C B 廃棄物の供給停止、焼却設備の運転の停止の方法等を定めて おくこと。
- ⑤ 断水時における焼却設備の熱的損傷や燃焼排ガスの冷却不足によるダイオキシン類の生成の防止のため、焼却設備の運転の停止の方法等を定めておくこと。

3) 事故への対応

低濃度PCB廃棄物の焼却施設において、万一設備の破損やその他の事故が発生し、汚水や気体の飛散及び流出、地下への浸透、発散等により人の健康又は生活環境に係る被害が生じたとき、または、生じるおそれがあるときは、被害の拡大を防止すべく、直ちに運転を停止し、応急の措置を講じるとともに、速やかにその事故の状況及び講じた措置の概要を都道府県知事等に届け出ることが必要である。また、事故の態様に応じた連絡体制を事前に整備した上で、所在地の市町村や近隣住民等関係者に連絡を行うことが適当である。さらに、低濃度PCB廃棄物が施設から流出する等の異常な事態が生じたときは、直ちに施設の運転を停止し、流出した低濃度PCB廃棄物の回収その他の生活環境の保全上必要な措置を講ずることが必要である。

5 火災防止

火災の発生を防止するために必要な措置を講ずるとともに、消火器その他の消火設備 を備えること。

(規則第4条の5第1項第2号フ、第12条の7第5項)

受入設備及び燃焼設備の態様に応じて、取り扱う油、薬剤、廃棄物等の種類、取扱量などを勘案し、適切な数量の消火器、水槽、バケツ等を設置する他、処理施設の区分ごとに消火設備を備えることが必要である。

また、万一火災が発生した場合に迅速に対応できるよう、消火対策にかかわる組織その他を整備するとともに、施設を安全に停止する方法等を定めておくことが必要である。

6 施設の点検及び機能検査

- ・施設の正常な機能を維持するため、定期的に施設の点検及び機能検査を行うこと。 (規則第12条の6第4号)
- ・廃油が地下に浸透しないように必要な措置を講ずるとともに、第12条の2第5項第2号の規定により設けられた流出防止堤その他の設備を定期的に点検し、異常を認めた場合には速やかに必要な措置を講ずること。

(規則第12条の7第5項第3号)

・産業廃棄物の飛散及び流出並びに悪臭の発散を防止するために必要な措置を講ずること。

(規則第12条の6第5号)

・施設の維持管理に関する点検、検査その他の措置の記録を作成し、3年間保存すること。

(規則第12条の6第9号)

施設の機能を維持するためには、定期的に施設の点検や機能検査を行うことが必要である。また、施設の機能の状況の変化を把握するため、点検、検査その他の措置に関する記録を作成し3年間保存することが必要である。点検等の記録は、その後の施設の維持管理に活用することが適当である。

点検や機能検査は、下記を踏まえて行うことが適当である。

1)目的に応じた点検及び機能検査の実施

点検及び機能検査は、その目的や方法を踏まえ、下記のような分類に基づき実施 する。

① 日常点検

日常点検とは、運転状態にある設備等に設置された計器類の指示値及び運転員の

感覚により、異常の有無を日常的に確認するための点検をいう。低濃度PCB廃棄物の焼却施設においては、基本的に毎日、施設内を巡回し、焼却設備の圧力や温度、供給する低濃度PCB廃棄物の供給量等が正常であるか等について、異常の有無を確認する。

② 定期点検

定期点検とは、施設の運転を停止して、運転中にはできない設備内部の異常の有無を確認するために行う点検をいう。定期点検は、日常点検の記録などを参照し、腐食摩耗の状況などを主体に行う。また、点検の結果を踏まえ、必要に応じて補修及び設備等の更新を実施する。定期点検の頻度は、設備の種類等に応じて定める。なお、低濃度PCB廃油の受入タンクやボイラ設備など、設備の中には関係法令に準拠して設計されているものもあり、これらは法定点検に併せて行うことが適当である。

③ 機能検査

機能検査とは、機器類を含む設備が、経年劣化などが無く正常な機能を維持しているかどうか確認するための検査をいう。機能検査は、主に濃度計や温度計など運転が適正に行われていることを確認する機器類や設備に対して行う。仕様どおりの機能を発揮させるため、機能検査は設備メーカー等の専門家によるものとすることが望ましい。

2) 点検及び機能検査方法のルール化

設備毎に、実施箇所、項目、方法、判定基準、頻度、対策等を予め定めておき、 それに従った点検及び機能検査を行う。また、点検等を行う者が勝手にその内容を 変更することは、トラブルや事故の原因となるおそれがあるため、点検及び機能検 査に関するチェックリスト等を作成し、これに沿った点検及び機能検査を行う。

3) 補修

点検により判定基準を超過する等の設備の異常が発見された場合、もしくは異常のおそれがある場合には、該当箇所の補修を行う。補修に際しては、併せて異常の原因を究明し、それを踏まえた再発防止対策を講じる。

4) その他

低濃度PCB廃棄物の焼却施設においては、特に低濃度PCB廃油の流出防止のための点検及び機能検査を行うことが求められる。そのため、受入設備、供給設備及び燃焼設備等において、低濃度PCB廃油の流出がないか、配管等の劣化がないか、床面や流出防止堤に亀裂やひび割れが生じていないか等について日常的に点検を行うとともに、損傷等が確認された場合には、漏えい防止等の補修を行うことが

必要である。

また、点検のために低濃度PCB廃油が付着している機器類を取り外す場合は、 それによる二次汚染の防止に留意するとともに、二次汚染防止のために必要なウエス等の資材を準備して行うことが必要である。

7 生活環境保全

1) 排ガス処理

- ・集じん器に流入する燃焼ガスの温度をおおむね 200℃以下に冷却すること。ただし、 集じん器内で燃焼ガスの温度を速やかにおおむね 200℃以下に冷却することができる 場合にあっては、この限りではない。
- ・集じん器に流入する燃焼ガスの温度(上記のただし書きの場合にあっては、集じん器 で冷却された燃焼排ガスの温度)を連続的に測定し、かつ、記録すること。
- ・冷却設備及び排ガス処理設備にたい積したばいじんを除去すること。
- ・排ガスによる生活環境保全上の支障が生じないようにすること。
- ・ばいじんを焼却灰と分離して排出し、貯留すること。

(規則第4条の5第1項第2号チ、リ、ヌ、ヨ、レ、第12条の7第5項)

集じん器でのダイオキシン類の生成抑制のため、集じん器に流入する燃焼ガスの温度をおおむね200℃以下に冷却するか、もしくは集じん器内で燃焼ガスの温度を速やかにおおむね200℃以下に冷却することが必要である。また、集じん器に流入する燃焼ガスの温度を連続的に測定かつ記録することで、おおむね200℃以下に冷却されていることを確認することが必要である。

さらに、集じん器の性能を定期的に点検し、ばいじんの除去を適切な頻度で行うことで、ばいじんの排ガス中への排出を抑制することが必要である。ばいじんと焼却灰 (燃え殻) は、その成分が異なるため、各々別の設備に貯留することが必要である。

この他、排ガスの冷却水が適切に供給されていない場合は、排ガス中のダイオキシン類の生成量の増加や配管等の腐食によるガスの漏えい等の重大事故につながるおそれがある。そのため、冷却水や洗浄水の量、温度、pH 等を正常な範囲で維持するとともに、緊急時に支障が生じないよう、緊急水タンクから供給する等の対応を行うことが適当である。

低濃度PCB廃棄物の焼却施設においては、PCB及びダイオキシン類のみならず、 鉛等の重金属等についても、排ガスによる生活環境保全上の支障が生じないようにす ることが必要である。そのため、公害関係法令等に基づく排出基準値等や周辺の環境 濃度等を考慮し、管理目標値を設定した上で、その値を遵守するための管理を行うこ とが適当である。

2) 排ガス等の測定

- ・煙突から排出される排ガス中の一酸化炭素濃度を連続的に測定し、かつ、記録すること。
- ・煙突から排出される排ガス中のダイオキシン類の濃度を年1回以上、ばい煙量又は ばい煙濃度(硫黄酸化物、ばいじん、塩化水素及び窒素酸化物に係るものに限る。) を6月に1回以上測定し、かつ、記録すること。
- ・排気口又は排気筒から排出される排ガス中のPCBの濃度を6月に1回以上測定し、 かつ、記録すること。

(規則第4条の5第1項第2号ヲ、カ、第12条の7第5項第2号ロ)

・大気基準適用施設又は水質基準適用事業場の設置者は、毎年1回以上で政令で定める 回数、政令で定めるところにより、大気基準適用施設にあっては当該大気基準適用施 設から排出される排出ガス、水質基準適用事業場にあっては当該水質基準適用事業場 から排出される排出水につき、そのダイオキシン類による汚染の状況について測定を 行わなければならない。

(ダイオキシン類特措法第28条第1項)

・廃棄物焼却炉である特定施設に係る前項の測定を行う場合においては、併せて、その 排出する集塵機によって集められたばいじん及び焼却灰その他の燃え殻につき、政令 で定めるところにより、そのダイオキシン類による汚染の状況について、測定を行わ なければならない。

(同法第28条第2項)

・大気基準適用施設又は水質基準適用事業場の設置者は、前2項の規定により測定を 行ったときは、その結果を都道府県知事に報告しなければならない。

(同法第28条第3項)

・ダイオキシン類特措法第 28 条第1項の規定による測定は、毎年1回以上、同項の排 出ガス又は排出水に含まれるダイオキシン類の量について、環境省令で定める方法に より行うものとする。

(同法施行令第4条第1項)

・排出ガスを測定する場合にあっては、日本工業規格 KO311 によるほか、次によること。 イ 排出ガスの採取に当たっては、通常の操業状態において ((ダイオキシン類特措 法施行) 令別表第1第5号に掲げる施設にあっては、燃焼状態が安定した時点か ら1時間以上経過した後)、原則4時間以上採取すること。

(同法施行規則第2条第1号イ)

- ロ 採取したガスは、温度が零度であって、圧力が一気圧の状態のものに換算すること。 (同法施行規則第2条第1号ロ)
- ハ ダイオキシン類特措法施行令別表第1第1号及び第5号に掲げる施設からの排出 ガスを測定する場合にあっては、日本工業規格 K0311の7.4.3の備考の酸素濃 度による補正を行うこと。この場合、換算する酸素の濃度(On)はダイオキシン特 措法施行令別表第1第1号に掲げる施設にあっては15パーセント、ダイオキシン類 特措法施行令別表第1第5号に掲げる施設にあっては、12パーセントとすること。 (同法施行規則第2条第1項第1号ハ)
- ・廃棄物焼却炉である特定施設から排出される当該特定施設の集じん機によって集められたばいじん及び焼却灰その他の燃え殻の処分(再生することを含む。)を行う場合には、当該ばいじん及び焼却灰その他の燃え殻に含まれるダイオキシン類の量が厚生省令で定める基準以内となるように処理しなければならない。

(同法第24条第1項)

・同法第24条第1項の環境省令で定める基準は、1グラムにつき3ナノグラムとする。 (同法施行規則第7条の2第1項第1号)

処理施設が人の健康又は生活環境に係る被害を生ずることなく運転がなされていることを確認するため、排ガスや焼却灰(燃え殻)、ばいじん等の測定を行い、その結果を記録するとともに、都道府県知事等へ報告することが求められる。低濃度PCB廃棄物の焼却施設については、法(廃棄物処理法)、ダイオキシン類対策特別措置法(平成11年法律第105号)等に基づき、表2.1に示す測定が必要である。

さらに、測定頻度、測定項目については、地域の状況に応じて増やすことが適当である。特に処理開始時には排ガス中のPCB濃度等の測定頻度を高くし、順調に処理が行われていることが確認できた後、その頻度を低くする等の対応を行うことや処理施設において初めて低濃度PCB廃棄物の処理を開始する時は、測定頻度を高くすることが望ましい。また、排ガス中のPCB濃度等の測定については、基本的に6ヶ月に1回以上とされているが、その内の年1回は、適切な第三者分析機関において実施することが望ましい。

なお、排ガス中のPCB濃度等が異常になるような事故により、設備を停止し原因 究明後に設備改善等を実施して、施設を再稼働する場合は、排ガス中のPCB濃度等 を改めて確認し、安全に稼働できることを把握することが必要である。

排ガス中のPCBの暫定排出許容限界

PCB等の焼却施設から排出される燃焼排ガス中に含まれるPCBの量は、次の要件を

みたすこと。

- ・排ガス中に含まれる P C B の量は、いかなる場合においても $0.25 mg/m^3$ (液状の P C B 等の焼却施設にあっては $0.15 mg/m^3$)をこえないこと。
- ・排ガス中に含まれる P C B の量は、平均して $0.15 mg/m^3$ (液状の P C B 等の焼却施設にあっては $0.10 mg/m^3$) をこえないこと。

(昭和47年12月22日 環大企第141号、各都道府県知事あて環境庁大気保全局長通知)

排ガス中のダイオキシン類濃度の維持管理基準値

燃焼室の焼却能力	維持管理基準
4 t/h 以上	0.1ng-TEQ/m ³ N
2 t/h - 4 t/h	1 ng-TEQ/m³N
2 t/h 未満	5 ng-TEQ/m³N

(規則第4条の5第1項第2号ワ(別表第2)、第12条の7第5項)

表2.1 排ガス等の測定項目例

測定箇所	分析項目	備考
排ガス (煙突)	РСВ	6ヶ月に1回以上測定・記録
	ダイオキシン類	6ヶ月に1回以上測定・記録
	一酸化炭素	連続測定・記録
	ばいじん	6ヶ月に1回以上測定・記録
	塩化水素	同上
	窒素酸化物	同上
	硫黄酸化物	同上
焼却灰(燃え殻)及び	ダイオキシン類/PCB	6ヶ月に1回以上測定・記録
ばいじん (飛灰)		

焼却灰(燃え殻)及びばいじん中のダイオキシン類濃度の基準値

焼却灰(燃え殻)及びばいじん中のダイオキシン類濃度 3 ng-TEQ/g(ダイオキシン類特措法施行規則第7条の2第1項)

3) 排水の測定

・施設から排水を放流する場合は、その水質を生活環境保全上の支障が生じないものと するとともに、定期的に放流水の水質検査を行うこと。

(規則第12条の6第8号)

・処理に伴い生じた排水を放流する場合にあっては、放流水中のPCB含有量、ノルマルヘキサン抽出物質含有量及び水素イオン濃度を6月に1回以上測定し、かつ、記録すること。

(規則第12条の7第5項第2号ハ)

排水中のPCB濃度の基準値

有害物質の種類	許容限度
ポリ塩化ビフェニル	1 リットルにつき 0.003 ミリグラム

(排水基準を定める省令 別表第1)

・大気基準適用施設又は水質基準適用事業場の設置者は、毎年1回以上で政令で定める 回数、政令で定めるところにより、大気基準適用施設にあっては当該大気基準適用施 設から排出される排出ガス、水質基準適用事業場にあっては当該水質基準適用事業場 から排出される排出水につき、そのダイオキシン類による汚染の状況について測定を 行わなければならない。

(ダイオキシン類特措法第28条第1項)

・大気基準適用施設又は水質基準適用事業場の設置者は、前2項の規定により測定を行ったときは、その結果を都道府県知事に報告しなければならない。

(同法第 28 条第 3 項)

・法第28条第1項の規定による測定は、毎年1回以上、同項の排出ガス又は排出水に含まれるダイオキシン類の量について、環境省令で定める方法により行うものとする。

(同法施行令第4条第1項)

・排水中のダイオキシン類濃度の基準値は、1 リットルにつき 10 ピコグラム以下である。

(同法施行規則別表第2)

・排出水を測定する場合にあっては日本工業規格 KO312 によること。

(同法施行規則第2条第1項第2号)

施設から排水を放流する場合は、その水質を人の健康又は生活環境に係る被害を生じないものとすることが必要である。具体的には、放流先(海、河川等の公共用水域、下水道等)に応じて適用される法令(法、ダイオキシン類対策特別措置法、水質汚濁防止法等)の基準を遵守する必要がある。この他、放流先の環境濃度等を考慮し、管理目標値を設定した上で、その値を遵守するための管理を行うことが適当である。

また、処理施設が人の健康又は生活環境に係る被害を生ずることなく運転がなされていることを確認するため、定期的に放流水の水質検査を行うことが必要である。低 濃度PCB廃棄物の焼却施設については、表2.2に示す測定が必要である。

さらに、測定頻度、測定項目については、地域の状況に応じて増やすことが適当である。特に処理開始時には排水中のPCB濃度等の測定頻度を高くし、順調に処理が行われていることが確認できた後、その頻度を低くする等の対応を行うことや、処理施設において初めて低濃度PCB廃棄物の処理を開始する時は測定頻度を高くすることが望ましい。また、排水中のPCB濃度等の測定については、基本的に6ヶ月に1回以上とされているが、その内の年1回は、適切な第三者分析機関において実施することが望ましい。

なお、排水中のPCB濃度等が異常になるような事故により、設備を停止し原因究明後に設備改善を実施して、施設を再稼働する場合は、排水中のPCB濃度等を改めて確認し、安全に稼働できることを把握することが必要である。

	11	
測 定 箇 所	項目	備考
排水 (放流水)	РСВ	6ヶ月に1回以上測定・記録
	ダイオキシン類	6ヶ月に1回以上測定・記録
	рН	6ヶ月に1回以上測定・記録
	ノルマルヘキサン抽出物質	6ヶ月に1回以上測定・記録

表2.2 水質調査項目の例

4) 悪臭発散防止

産業廃棄物の飛散及び流出並びに悪臭の発散を防止するために必要な措置を講ずること。

(規則第12条の6第5号)

産業廃棄物の飛散及び流出並びに悪臭の発散を防止するための措置を講ずることが必要である。低濃度PCB廃棄物の焼却施設における悪臭の発生源としては、低濃度PCB廃油や揮発性の有機溶剤等が考えられる。これらによる悪臭の発散防止措置としては、低濃度PCB廃油や有機溶剤等を密閉性のタンクや容器に収納することに加え、収納した容器を屋内に保管する場合は、必要に応じて保管場所の排気を活性炭吸着処理すること等が考えられる。

5) 騒音・振動の防止

著しい騒音及び振動の発生により周囲の生活環境を損なわないように必要な措置を 講ずること。

(規則第12条の6第7号)

施設からの騒音及び振動は、騒音規制法、振動規制法、自治体が定める騒音・振動に関する条例等の基準を遵守することが必要である。また、日常点検を行う際、異常な騒音や振動がないか、確認することが適当である。

6) 清潔の保持

蚊、はえ等の発生の防止に努め、構内の清潔を保持すること。

(規則第12条の6第6号)

処理施設において発生する従業員の生活に係る廃棄物を適切に管理するなど、構内 の清潔を保持することが必要である。

7) 周辺環境の調査

低濃度PCB廃棄物の処理施設においては、人の健康又は生活環境に係る被害を生ずることなく運転がなされていることを確認して周辺住民の安心と信頼を得るためにも、例えば処理を行う場所の近隣に住居や配慮を要する施設等が設置されている場合には、それらが設置されている方向の敷地境界において、排ガスの測定と併せ、大気中のPCB濃度等の測定を6ヶ月に1回以上実施することが適当である。また、排ガス中や排水中のPCB濃度の異常が確認されたり、低濃度PCB廃油の漏えいが発生したりした時は、周辺環境の調査を実施することが必要である。

- 8 維持管理等に関する記録の作成・保存・閲覧
 - ・産業廃棄物処理施設の維持管理に関し環境省令で定める事項を記録し、これを当該 産業廃棄物処理施設(当該産業廃棄物処理に備え置くことが困難である場合にあっ ては、当該産業廃棄物処理施設の設置者の最寄りの事務所)に備え置き、当該維持 管理に関し生活環境の保全上利害関係を有するものの求めに応じ、閲覧させなけれ ばならない。

(法第8条の4、第15条の2の4、第15条の4の4第3項)

- ・環境省令で定める事項及びその記録を備え置くべき日は、次のとおりである。
 - イ 処分した産業廃棄物の各月ごとの種類及び数量

(翌月の末日まで)

ロ 燃焼室中の燃焼ガスの温度、集じん器に流入する燃焼ガスの温度及び煙突から

排出される排ガス中の一酸化炭素濃度の測定に関する、測定位置、測定結果の 得られた年月日及び測定結果

(当該測定の結果の得られた日の属する月の翌月の末日まで)

ハ 煙突から排出される排ガス中のダイオキシン類の濃度及びばい煙量又はばい煙 濃度の測定に関する測定に係る試料を採取した位置及び年月日、測定の結果の 得られた年月日、測定の結果

(当該測定の結果の得られた日の属する月の翌月の末日まで)

二 排気口又は排気筒から排出される排ガス中のPCB濃度、処理に伴い生じた排水を放流する場合にあっては、放流水中のPCB含有量、ノルマルヘキサン抽出物質含有量及び水素イオン濃度の測定を行った位置、測定の結果の得られた年月日、測定の結果

(当該測定の結果の得られた日の属する月の翌月の末日まで)

ホ 冷却設備及び排ガス処理設備にたい積したばいじんの除去を行った年月日 (当該除去を行った日の属する月の翌月の末日まで)

(以上、規則第12条の7の4第1号、第12条の7の5第1号)

へ 処分した低濃度PCB廃棄物の各月ごとの種類及び数量

(翌月の末日まで)

ト 低濃度PCB廃棄物を処理したものが無害化の基準に規定する基準に適合していることを確認するための試験に係る試料を採取した位置及び年月日、試験の結果の得られた年月日、試験の結果

(当該試験の結果の得られた日の属する月の翌月の末日まで)

(以上、告示第9条、第10条)

上記記録の閲覧期間

・記録は、備え置いた日から起算して3年を経過する日までの間備え置き、閲覧に供すること。

(規則第12条の7の4第2号)

- ・閲覧の求めがあった場合にあっては、正当な理由なしに閲覧を拒まないこと。 (規則第12条の7の4第3号)
- ・施設の維持管理に関する点検、検査その他の措置の記録を作成し、3年間保存する こと。

(規則第12条の6第9号)

低濃度PCB廃棄物の処理施設の維持管理に関して、規則及び告示に定められた事項を記録し、その記録は、備え置いた日から起算して3年を経過する日までの間備え置き、当該維持管理に関し生活環境の保全上利害関係を有するものの求めに応じて閲

覧に供することが必要である。

現場での運転データや設備点検等の記録や情報は、単に記録するだけでなく、分類 や解析を行うことにより、より的確な維持管理を行うための検討材料として利用する ことが適当である。維持管理に関する情報は、事故や不具合の頻発する箇所の発見、 設備更新の適正な時期の把握等に有効であり、このような利用も踏まえ、記録する項 目や内容については事前に検討した上で定め、また、電算機による記録の管理を行う ことが望ましい。

なお、法第15条の2の3第2項において、産業廃棄物処理施設の維持管理に関する計画及び当該産業廃棄物処理施設の維持管理の状況に関する情報については、インターネット等の利用により公表しなければならないと定められていることから、低濃度PCB廃棄物の焼却施設の維持管理の状況等についても同様に公表することが適当である。

処理施設に係る各種の許可申請、届出、報告については必要な時に、求めに応じて 遅滞なく行うことが必要である。そのためにも、情報の管理を確実に行うことが望ま しい。

ニーコ Δコ チ スー、こ	必要がある項目には	は、下記に示すもの等がある。
- 三世(40世/27/11年7)		

			T
	具体例	記録を備え置く べき期間	記録の利用方法 の例
点検・検査・補修に 関する記録	日常点検や定期点 検等	点検した日から 3年間保存	設備更新の適正な 時期の把握等
排ガスの測定に関 する記録	一酸化炭素濃度、 PCB及びダイオ キシン類濃度等	翌月の末日まで備 え置き、備え置いた 日から3年間保存	情報公開
排水の測定に関す る記録	PCB及びダイオ キシン類濃度等	同上	同上
運転管理に関する記録	燃焼ガスの温度、 低濃度 P C B 廃棄 物の受入量や処理 量等	日報や月報を記録 した日から3年間 保存	同上
マニフェスト伝票 等の管理表	受け取り、処理、処 理後の回付等	5年間保存	許可更新等

9 処理施設において発生した廃棄物の適正処理

低濃度PCB廃棄物の焼却施設において発生する廃棄物としては、焼却灰(燃え殻)やばいじんの他、加熱分離設備で発生する廃電気機器等の加熱残渣に加え、防護服等の保護具やウエス等が挙げられる。これらの廃棄物について、最終処分又は再生が終了するまでの一連の処理行程における処理が適正に行われるよう、必要な措置を講ずることが求められる。

特に、低濃度PCB廃棄物の焼却施設において、焼却灰やばいじん並びに加熱分離設備で発生した廃電気機器等の加熱残渣等を他の産業廃棄物処理業者又は再生業者に委託する際は、これらに含まれるPCBやダイオキシン類が確実に分解され基準値以下となっていることが求められる。焼却処理によってPCBやダイオキシン類が分解されていることについては、燃焼ガスの温度や滞留時間並びに加熱分離設備の加熱ガス温度等が適切に確保されていることを確認することが必要である。また、焼却灰やばいじん並びに廃電気機器等の加熱残渣から基準を超えるPCB等が検出されないことについて、各々6ヶ月に1回以上PCB濃度等を確認することが必要である。さらに、低濃度PCB廃棄物の処理に伴い発生した保護具やウエス等について、法に基づく許可等を得て当該焼却施設で処理を行う場合は、本ガイドラインに従った取扱いを行うことが適当である。加えて、鉛、クロム等の重金属を含む塗膜くず等を焼却処理する場合は、発生する燃え殻及びばいじんに含まれる鉛、六価クロム等の溶出濃度を測定し、これらの基準を満たしていることを確認することが必要である。

一方、変圧器等のブッシング(碍子)のシール材(パッキン又はガスケット)には 石綿が使用されたものがあるため、これらを焼却又は加熱処理した後の残渣には石綿 が含まれている可能性がある。このため、当該処理後の残渣については、石綿が飛散 するおそれのないよう十分注意して取り扱うとともに、シール材が付着したままのブ ッシング等は適正に処分することが望ましい。また、焼却又は加熱処理後の変圧器等 を解体してブッシングに付着したシール材を取り外す場合は、石綿の飛散を防止する ため、当該部分を薬剤等で湿潤化してから手作業により丁寧に剥ぎ取る等といった配 慮が必要である。

加熱分離設備で加熱分離処理された変圧器等の微量PCB汚染廃電気機器等の加熱 残渣については、表2.3に示す測定項目の検定分析を行うことが必要である。

表2.3 加熱残渣の測定項目及び検定方法(例)

加熱残渣の種類		測定項目	検定方法
変圧器	容器の内壁	РСВ	拭き取り試験法
	鉄心	РСВ	部材採取試験法
			又は拭き取り試験法
	一次コイル銅線	РСВ	部材採取試験法
	二次コイル銅線	РСВ	部材採取試験法
	木くず・紙くず(絶縁紙)	РСВ	溶出試験法
		ダイオキシン類	(含有量試験)
	磁器	РСВ	部材採取試験法
ンデン	容器の内壁	РСВ	拭き取り試験法

	銅線	РСВ	部材採取試験法
	素子等(絶縁紙等)	РСВ	溶出試験法
		ダイオキシン類	(含有量試験)
	導体 (銅)	РСВ	部材採取試験法
	遮へい層	РСВ	部材採取試験法
O F ケ	絶縁紙 金属被(鉛又はアルミ)	РСВ	溶出試験法
		ダイオキシン類	(含有量試験)
ーブ		РСВ	部材採取試験法
ル	補強層	РСВ	部材採取試験法
	防食層	РСВ	溶出試験法
		ダイオキシン類	(含有量試験)
絶縁油等が入っていた金属製容器の内壁		РСВ	拭き取り試験法

ここで、加熱残渣のPCB濃度等の測定は、処理開始時には処理したすべての廃電 気機器等を対象に、上表に示したすべての加熱残渣の種類と項目について測定頻度を 高くして実施することが必要である。ただし、処理が順調かつ確実に行われているこ とが確認できた後は測定対象物及び測定頻度を低くすることや、処理実績を重ねる中 で検定分析の結果が常時判定基準を大きく下回っているなど、明らかにPCBの残留 の懸念がないといえる部材については検定分析を省略することを検討してもよい。

これらの測定については原則、6ヶ月に1回以上行うこととされているが、その内の年1回は、適切な第三者分析機関において実施することが望ましい。

10 運転管理体制

・産業廃棄物処理施設の設置者は、当該処理施設の維持管理に関する技術上の業務を担 当させるため、技術管理者をおかなければならない。

(法第21条第1項)

・技術管理者は、その管理に係る処理施設に関して技術上の基準に係る違反が行われないように、当該処理施設を維持管理する事務に従事する他の職員を監督しなければならない。

(法第21条第2項)

・第1項の技術管理者は、環境省令で定める資格を有する者でなければならない。

(法第21条第3項)

低濃度PCB廃棄物の焼却施設の設置者は、当該施設の維持管理に関する技術上の

業務を担当する技術管理者を置くことが必要である。

技術管理者は、低濃度PCB廃棄物及びその処理について、性質、特徴、取扱方法、環境に与える影響等を熟知しており、かつ、処理を行うための知識及び技能を有することが必要である。また、技術上の基準に係る違反が行われないように、維持管理に従事する他の職員を監督することも必要である。さらに、作業従事者の安全衛生や施設の安全管理を徹底するため、安全管理者を置くなど安全管理体制を構築すること、適正な作業環境の確保のため、労働安全衛生法(昭和 47 年法律第 57 号)等関係法令に基づく措置を講ずることが必要である。

さらに、安全かつ確実な処理を進めるため、維持管理に従事する職員の能力を維持 向上する目的で、教育や訓練の規定を整備して、定期的に安全教育及び技能教育並び に訓練を実施することが必要である。教育科目は、少なくとも下記に定める内容を含 むものとし、低濃度PCB廃棄物の性状に関し注意すべき事項、関係法令や本ガイド ラインが定める適切な取扱い方法、事故等の緊急時における応急処置及び連絡方法並 びに各種作業マニュアルや緊急マニュアルに基づく具体的な作業手順について対象者 に確実に教育し、必要に応じて作業訓練を行うものとする。また、その他の活動とし て危険予知訓練やヒヤリ・ハット活動(ヒヤリ・ハット情報を記録し、その原因を全 員で究明し、事故の要因とならないようにする活動)を行うことが適当である。

教育科目の例を以下に示す。

(1) 基本的事項

- 低濃度PCB廃棄物の性状等
- ・PCB廃棄物及び危険物に係る関係法令
- ・PCB廃棄物及び危険物の取扱い方法
- ・労働安全衛生法、大気汚染防止法、水質汚濁防止法等当該業務に関連のある法令

(2) 本ガイドラインの内容

- ・ 処理施設の構造等
- ・ 処理施設の維持管理等

受入設備、供給設備、燃焼設備、事故時等の対応、火災防止、施設の点検及び機能検査、生活環境保全、維持管理等に関する記録の作成・保存・閲覧、処理施設において発生した廃棄物の適正処理、運転管理体制、事故の未然防止等

(3) 緊急時の対策

・事故等の緊急時における応急処置及び連絡方法(緊急マニュアルに基づいて)

(4) 作業マニュアル

- 焼却施設の標準運転作業手順書
- その他各種作業に伴う具体的な作業手順マニュアル

11 事故の未然防止

低濃度PCB廃棄物の焼却処理を行う場合は、その受入や焼却処理中の事故又は火災等により、生活環境への影響又は従業員等の健康被害が生じないように、これらの事故等を未然に防止することが重要である。このため、本ガイドラインに従い、低濃度PCB廃棄物の取扱い等について十分留意するとともに、以下の措置を講じることが必要である。

- ①漏えい防止措置
- ②揮発防止措置
- ③腐食防止措置
- ④火災防止措置
- ⑤盗難・紛失の防止措置

事故等による低濃度 P C B 廃棄物の飛散・流出、火災等の被害を防止するため、処理施設においては、保護具、吸収材、土砂、消火器等の応急措置設備・器具を常備する必要がある。常備しておく応急処置設備・器具の例を表 2. 4 に示す。

7	
種類	防 災 備 品
保護具	耐油性手袋、長靴、保護メガネ等
流出・飛散防止用具	オイルマット、吸収材、ウエス、土砂等
回収用具	シャベル、容器等
消火設備	粉末消火器、二酸化炭素剤消火器等
連絡設備・器具	電話 (携帯電話等)
緊急時マニュアル等	緊急時対応マニュアル、緊急連絡先一覧表

表2. 4 処理施設における応急措置設備・器具の例

12 緊急時連絡体制

低濃度PCB廃棄物の焼却処理を行う場合には、処理中の事故等緊急時に関係者に対して速やかに通報し、その被害及び影響を最小限とするための対策が講じられるよう、予め都道府県、環境省(無害化処理認定施設の場合)、消防署、警察署等、必要な緊急連絡先を確認しておかなければならない。

処理施設責任者は、事故等の緊急時における連絡先、被害を防止するために必要な措置(緊急措置、緊急連絡、火災・漏えい時等の対応等)を記載した緊急時対応マニュアルを定めるとともに、必要時にいつでも使用できるよう適切な場所に保管しておくことが重要である。具体的には、以下のことを行うことが必要である。

- ① 事故等発見者は、消防、警察及び処理施設責任者に通報する。
- ② 通報を受けた処理施設責任者は、予め定められた緊急連絡網に基づき、都道府県の環境部局に及び環境省(無害化処理認定施設の場合)連絡する。事故の態様に応じ

て近隣住民等にも連絡する。

③ 都道府県環境部局は、関係部局、市町村、関係都道府県等に連絡する。

13 緊急時の措置

低濃度PCB廃棄物の焼却処理を行う際に緊急事態が発生した場合には、緊急時対応マニュアルに基づき、必要な応急措置等を行う必要がある。

1) 関係機関への通報等

- ① 焼却施設の従事者は、施設の運転を停止し、直ちに応急措置(吸収材、消火剤等で 状況に応じた流出防止措置、初期消火を行う。)を講じて、付近の者に警告を発す るとともに、消防署、警察署及び緊急連絡先に通報し、その指示に従う。
- ② 緊急連絡を受けた処理施設責任者は、都道府県等に連絡を行う。
- ③ 焼却施設の従事者は、付近に関係者以外が立ち入らないようにし、緊急時対応マニュアルに基づき、応急措置を行うとともに、消防、警察が現場に到着した場合には、当該マニュアル、低濃度PCB廃棄物を取り扱う際に注意すべき事項を記載した文書等を消防・警察に提示する。
- ④ 特に低濃度PCB廃油が公共用水域や土壌等に流出した場合には、直ちに引き続く 低濃度PCB廃油の流出を防止するための応急措置を講じるとともに、緊急連絡先 を通じて都道府県等に連絡を行い、その指示に従う。

2) 流出・拡散の防止

- ① 焼却施設の従事者は、流出・拡散の状況に応じた保護具(耐油性手袋、長靴、保護マスク、保護メガネ等)を着用し、流出した低濃度PCB廃油をオイルマット、吸収材、ウエス、土砂等に吸収させ、又はウエス等で拭き取り、密閉できる容器に回収し保管する。都道府県の担当部局の指示に従いPCBが付着したものの処置、又は付着した土壌等の除去を行う。
- ② 低濃度PCB廃油が付着した汚染物は、低濃度PCB汚染物として適切に無害化処理施設で無害化処理する。

3)消火

- ① 設置している消火設備等を使用し、消火する。
- ② 消火用泡等は、流出を防止し、後で適切に処理する。

4)環境調査

低濃度 P C B 廃油が事故や災害によって、万一、公共用水域や土壌等に流出した場合には、関係自治体の担当部局の指示に応じて、水質、土壌、周辺大気等に関す

る調査を実施する。

14 専門家による支援

低濃度PCB廃棄物の焼却処理を行う者は、安心、安全な処理の確保を図るため、 次の各項目について、専門家による支援を受けることが望ましい。

- 1) 定期的な処理状況を検証すること。
- 2) 関係自治体及び周辺住民との信頼関係を構築 (適切なリスクコミュニケーション) すること。
- 3) 重大事故が発生した場合は、その原因解明や対策等を速やかに行うこと。

第3章 円滑な処理のために必要な事項

3.1 目的

低濃度PCB廃棄物の処理を円滑に進めるため、低濃度PCB廃棄物の処理を行う又は行おうとする者は、処理施設を設置する又は設置しようとする地を管轄する都道府県や市町村、処理施設の近隣住民等との間で、処理に伴うリスクの程度、処理の安全性の確保に向けた取組や処理の状況、トラブル時の対応等に関して情報を共有し、処理に関して共通の理解を得ることにより、処理を円滑に進めるための信頼関係を構築することが適当である。

PCBは、昭和 43 年にカネミ油症事件が発生したこと等を踏まえ、国内では昭和 49 年に化学物質の審査及び製造等の規制に関する法律(昭和 48 年法律第 117 号)により、PCBの製造や使用等が原則禁止された。その後、平成 13 年にポリ塩化ビフェニル廃棄物の適正な処理の推進に関する特別措置法(平成 13 年法律第 65 号)が制定され、その処理の推進が図られている。PCBは環境中で蓄積されやすい物質であり、いったん環境中に放出されると、その汚染が拡大されやすいことから、安全性を確保した上で低濃度PCB廃棄物の適正な処理を進め、PCBによる汚染を防止することが求められている。しかし、PCBやPCBを使用した製品が廃棄物となったものについては、施設の設置に関して住民の理解が得られなかったことなどから、かつて長期にわたりほとんど処理が行われなかった。

一方、微量 P C B 汚染廃電気機器等の絶縁油に含まれる P C B の濃度は、概ね数 mg/kg から数十 mg/kg 程度であり、P C B を使用した製品の絶縁油に含まれる P C B の濃度 (60% (600,000mg/kg) ~100% (1,000,000mg/kg)) に比較しておよそ 10 万分の $1 \sim 1$ 万分

このため、低濃度PCB廃棄物の焼却処理を行う又は行おうとする者は、処理施設を設置する又は設置しようとする地を管轄する都道府県や市町村、処理施設の近隣住民等との間で、平常時のリスクの程度と処理の安全性の確保のための取組や処理の状況、異常時のリスクの程度と対応等に関して情報を共有し、処理に関して共通の理解を得ておくことが適当である。

3. 2 平常時の処理の安全性の確保に向けた取組事項

低濃度PCB廃棄物の処理を行おうとする者は、処理を開始する前に、処理施設を設置しようとする地を管轄する都道府県や市町村、処理施設の近隣住民等との間で、処理に伴うリスクの程度や処理の安全性の確保に向けた取組に関する下記の事項等について情報を共有するとともに、必要な見直しを行うことにより、処理に関して共通の理解を得ることが適当である。

- ・施設の管理の方法
- ・排ガスや排水、敷地境界におけるPCB濃度の測定
- ・処理対象物の管理
- ・処理に伴い生ずる廃棄物の管理

処理を円滑に進めるための信頼関係を構築するため、低濃度PCB廃棄物の処理を行おうとする者は、法第15条の4の4に基づく低濃度PCB廃棄物に係る産業廃棄物の無害化認定の特例の申請を行うに当たり、事前に処理施設を設置しようとする地を管轄する都道府県や市町村、処理施設の近隣住民等との間で、処理の安全性の確保に向けた取組に関し情報を共有するとともに、必要な見直しを行って申請に反映させることにより、処理についての理解を得ることが適当である。共有すべき情報の例を下記に挙げる。

1 施設の管理の方法

1) PCBの確実な分解を確保するための管理

① 燃焼温度の管理

焼却施設におけるPCBの分解率は燃焼温度の影響を受ける。そのため、低濃度PCB廃棄物の処理の際に確実にPCBを分解するためには、燃焼温度を一定以上に保つことが必要となる。また、燃焼温度が非常に高温となる場合は、耐火材などの施設の異常の原因となることから、それを防ぐための管理を行う必要がある。このような観点から、焼却温度の管理は、処理の安全性の確保のために重要なものである。

情報を共有すべき内容としては、確実な処理に必要となる燃焼温度の範囲やその根拠、燃焼温度の管理値、通常時の管理方法、異常時の管理方法、記録の頻度等が挙げられる。

② 排ガス中の一酸化炭素濃度の管理

焼却施設においてPCBを確実に分解するとともに、排ガスを生活環境保全上支障のない範囲に保つためには、完全燃焼の状態を保つことが必要となる。排ガス中の一酸化炭素濃度は、完全燃焼を確認するための指標となるものであることから、その管理を行う必要がある。このような観点から、排ガス中の一酸化炭素濃度の管理は、処

理の安全性の確保のために重要なものである。

情報を共有すべき内容としては、排ガスを生活環境保全上支障のないものとするための排ガス中の一酸化炭素濃度の範囲やその根拠、管理値、通常時の管理方法、異常時の管理方法、記録の頻度等が挙げられる。

③ 燃焼室内の圧力の管理

燃焼室内の圧力を常時負圧に管理することで、燃焼室内のガスが外部に排出されることを防止することができる。このような観点から、燃焼室内の圧力管理は、処理の安全性の確保のために重要なものである。

情報を共有すべき内容としては、施設の異常が発生するおそれのある圧力の範囲や その根拠、管理値、通常時の管理方法、異常時の管理方法、記録の頻度等が挙げられ る。

2) PCBの漏えい防止措置

液体である低濃度PCB廃油を取り扱う施設であるため、その廃油が施設外に流出することで、周辺環境への支障が生じることが懸念される。そのため、低濃度PCB廃油の漏えい防止のための措置をとることは、処理の安全性の確保のために重要なものである。

情報を共有すべき内容としては、低濃度PCB廃油を取り扱う工程及びその場所の位置、当該場所での漏えい防止措置の内容(不浸透性の床や防油堤等)、当該措置が機能を維持していることの確認方法及び確認の頻度、漏えいの有無を確認する方法等が挙げられる。

2 排ガスや排水、敷地境界におけるPCB濃度の測定

低濃度PCB廃棄物の処理が確実に行われ、人の健康又は生活環境に係る被害が生じていないことを確認するための測定を行って、その結果で評価を行い、周辺住民等の信頼を得ることが重要である。敷地境界でのPCB濃度の測定は、風向や気温といった気象条件等を踏まえた上で行うことが適切である。

情報を共有すべき内容としては、測定地点や測定の頻度、記録の方法等が挙げられる。

3 処理対象物の管理

1) 低濃度PCB廃棄物であることの確認方法

処理対象とする低濃度PCB廃棄物が処理可能な性状であるかを確認することは、施設における安全な処理を行う上で重要である。特に本ガイドラインではPCB自体を絶縁材料等として使用したものは処理の対象とせず、低濃度PCB廃棄物のみを処理の対象としていることから、処理施設へ搬入される廃棄物が低濃度PCB廃棄物で

あることを確認した上で処理することが必要となる。

情報を共有すべき内容としては、契約時の確認方法(排出事業者に予め搬入物のPCB濃度に係る分析結果を提出してもらうこと等)、搬入時の確認方法(PCB濃度を測定する等して搬入物が高濃度のPCBを使用した廃棄物でないことを確認する方法)、搬入物に関する情報の管理方法等が挙げられる。

2) 収集運搬業者との連携の方法

低濃度PCB廃棄物の搬入に当たり、収集運搬業者と連携を図った上で受入を行うことは、受入に伴うトラブルによるPCBの漏えい等を防止するために重要である。また、処理を円滑に進める上で、収集運搬業者による収集運搬時の事故等の発生によって低濃度PCB廃棄物の搬入が大幅に遅延する場合であっても、速やかに連絡が行え、処理業者と収集運搬業者が連携して適切に対応できる体制を整えておくことが求められる。

情報を共有すべき内容としては、搬入に当たってのルール、収集運搬業者との搬入 日時の確認方法、緊急時の連絡方法、搬入の受入時の責任分担等が挙げられる。

なお、低濃度PCB廃棄物の収集運搬に関する留意事項等は環境省から「低濃度PCB廃棄物収集・運搬ガイドライン」にまとめられ公表されているので、参考にして 適正に行うことが必要である。

4 処理に伴い生ずる廃棄物の管理

低濃度PCB廃棄物の処理に伴い生じる焼却灰(燃え殻)やばいじん等の廃棄物については、他の処理施設で適正に処理を行うことが必要となる場合が多い。この場合、処理の安全性の確保のためには、処理に伴い生ずる廃棄物についてその性状を確認の上、性状に応じた処理を確実に行う体制を整えておくことが適切である。

情報を共有すべき内容としては、処理に伴い生ずる廃棄物の種類、性状の確認方法と 管理方法、搬出のルール、運搬方法、処理施設の選択方法等が挙げられる。

3. 3 異常時の対応に関する事項

低濃度PCB廃棄物の処理を行おうとする者は、処理を開始する前に、処理施設を設置しようとする地を管轄する都道府県や市町村、処理施設の近隣住民等との間で、異常時や災害時の対応等に関する下記の事項について情報の共有を図り、処理に関して共通の理解を得ることが必要である。

- ・異常時の対応方法
- ・災害時の対応方法
- 連絡方法

共有すべき情報の例を下記に挙げる。

1 異常時及び災害時の対応方法

事故等による異常な事態や災害が生じた場合に、人の健康又は生活環境に係る被害を生ずるおそれのない対応を速やかに行うことができる体制を整えておくことは、処理の安全性を確保する上で重要である。そのためには、異常な事態や災害について早期に検知をすること、それに対して速やかに対応できる設備や体制を整えておくことが求められる。

情報を共有すべき内容としては、異常や災害を早期に検知するための施設管理の方法、 異常時や災害時におけるその態様ごとの運転管理方法(施設の運転停止等)及び人員確 保のための連絡体制、異常を防止するための設備の内容等が挙げられる。

2 連絡方法

異常や災害の態様に応じて適切な時期に情報提供を行うことは、処理について理解を得るために重要である。そのためには、異常や災害の態様に応じて適切な連絡体制を予め構築しておき、異常時や災害時に速やかに連絡が行える体制を整えておくことが求められる。

情報を共有すべき内容としては、異常や災害の態様に応じた緊急連絡体制の内容(連絡の時点や連絡先に応じた異常や災害の区分、連絡先、連絡の時点等)が挙げられる。

3. 4 その他

低濃度PCB廃棄物の処理を行おうとする者は、処理施設を設置する地を管轄する都道 府県や市町村、処理施設の近隣住民等との間で、処理の状況に関する下記の事項について 情報を共有するとともに、必要な見直しを行うことにより処理について理解を得ることが 必要である。

- ・環境安全教育や防災訓練等の実施に関する情報
- ・施設見学等の実施に関する情報
- ・処理状況の評価に関する情報

処理の実施時において、継続して安全な処理を行うための知見の向上を図り、また、処理の状況を積極的に情報公開することは、処理施設を管轄する自治体や近隣住民等との信頼関係を構築しながら処理を円滑に進める上で重要なことである。このため、低濃度PCB廃棄物の焼却処理を行おうとする者は、安全に処理を行うための知見の向上、処理状況に関する情報公開の方法、定期的な評価の方法等に関して関係者と情報を共有するとともに、必要な見直しを行うことにより、処理についての理解を得ることが必要である。情報公開の方法としては、例えばインターネットのホームページや環境報告書等が考えられる。共有すべき情報の例を下記に挙げる。

1 環境安全教育や防災訓練等の実施に関する情報

処理の安全性を確保するためには、運転管理等に従事する者が必要な知見を絶えず 習得することが求められる。このような観点から、環境安全教育や防災訓練等を定期 的に実施することは、重要な取組である。情報を共有すべき内容としては、環境安全 教育や防災訓練の内容、対象者及び頻度、並びにヒヤリ・ハット事例の収集方法等が 挙げられる。

2 施設見学等の実施に関する情報

処理の安全性を関係者に分かりやすく伝えることは、処理に関する関係者の理解を 得る上で重要である。そのため、処理の状況が容易に把握できる施設見学等の実施は、 重要な取組である。情報を共有すべき内容としては、施設見学等の内容や受付方法、 頻度等が挙げられる。

3 処理状況の評価に関する情報

処理の実績を積み重ねるにつれ、処理の安全性をより向上させるための知見も蓄積 されてくるものと考えられる。そのため、処理の状況について定期的にまとめ、その 内容について評価することは、処理の安全性を確保するために重要である。情報を共 有すべき内容としては、定期的にとりまとめる内容(処理量、排ガス等の測定結果、 異常の発生状況やそれに対する対応の内容、施設の改良の状況、環境安全教育や施設 公開等の実施状況等)、評価の方法、評価結果の公表等が挙げられる。